

Biology University Experiments

Biology: Curricula Compliant Experiments –

for your educational needs

PHYWE™ experiments have been matched to the curricula of more than 30 selected universities worldwide. The interaction between PHYWE's experiments and the supporting content of experimental lectures and lab courses has led to the creation of a teaching package that is highly relevant to the curriculum worldwide.

Biology Bachelor of Science Courses - Reference Curriculum

Content	1. Sem.	2. Sem.	3. Sem.	4. Sem.	5. Sem.	6. Sem.
Laboratory Experiments	Microscopy / Cell Biology 1 (Chapter 2)	Plant Physiol (Chap	logy / Botany ter 5)	Ecology 1 (Chapter 3)	Animal Physiology (Chapter 6)	Human Physiology / Neurobiology (Chapters 7, 10)
Lecture, Tutorial, Experiments	Experimental Physics *	Microscopy / (Chap	Cell Biology 2 ter 2)	Zoology 2	Ecology 2 (Chapter 3)	
Subsidiary Subject	Mathematics for Biologists	Biochemistry (Chapter 8)	Molecular Genetics	Biotechnology (Chapter 11)	Subsidiary and	Elective Subjects
Elective Subject			Behavioural Biology (Chapter 4)	Microbiology (Chapter 9)		Modern Imaging Methods (Chapter 12)
Interdisciplinary Subject	General Chemistry **	Organic Chemistry **		Communication, L tation Tech	anguages, Presen- niques, e. g.	
Theoretical Courses	Genetics	Statistics	Zoology 1	Ecology / Population Genetics	Evolutionary Biology	Ethics
Bachelor Thesis						Bachelor Thesis

More than 80% of the experimental courses are covered by PHYWE experiments!

PHYWE Experiments available in this catalogue

Please refer to TESS expert Physics catalogue

Please refer to TESS expert Chemistry catalogue

TESS expert and Demo expert Physics

TESS expert and Demo expert Chemistry

TESS expert and Demo expert Medicine

TESS expert and Demo expert Engineering and Geo Science

More than 100 years experience –

for higher education

110

CA.

8

and the second

With a 100-year tradition of excellence, PHYWE Systeme GmbH & Co. KG stands for tradition, partnership, innovation and quality – made in Germany.

PHYWE solutions for higher education can be individually adapted to the curriculum of your institution and provide ideal coverage for the full spectrum of performance specifications and requirements. Ask us to prepare a customised equipment offering to suit your special needs!

made in Germany

Enhancing the learning efficiency in your lab and your lecture hall with

- A curriculum-compliant collection of fascinating experiments
- A perfect interplay between lectures (Demo expert) and practical lab courses (TESS expert)
- An appropriate balance between classical and modern experimentation
- Modern computer-assisted experimentation with Cobra4
- More than 50 Nobel Prize-awarded experiments
- State-of-the-art and application-oriented setups, continuously enhanced
- Didactic literature for all experiments, additional informations at www.phywe.com (e.g. movies)
- PHYWE services Professional care from A to Z

TESS & Demo expert Biology

1	About PHYWE	2
2	Microscopy / Cell Biology	19
3	Ecology and Environment	33
4	Behavioural Biology	47
5	Plant Physiology / Botany	51
6	Animal Physiology	63
7	Human Physiology	71
8	Biochemistry	91
9	Microbiology	95
10	Neurobiology	101
11	Biotechnology	109
12	Modern Imaging Methods	115
13	Demonstration equipment	140
14	Indices	145

Traditional yet modern

100 years of quality

Those who know nothing must believe everything.

Marie von Ebner-Eschenbach

With a 100-year tradition of excellence, PHYWE Systeme GmbH & Co. KG stands for technical capability, innovation, quality and customer satisfaction. As a leading supplier of premium quality teaching and learning materials, nearly all made in Germany, PHYWE is one of the world's largest providers of system solutions for the instruction of the natural sciences.

The product range comprises scientific equipment, experiments and solution systems along with modern blended learning systems, literature and software for the areas of physics, chemistry, biology, medicine, material science and earth science. A broad spectrum of services such as training programmes, installation and comprehensive consulting services completes the portfolio.

PHYWE solutions can be individually adapted to the specific curricula in each country and provide ideal coverage for the full spectrum of performance specifications and requirements. Ask us to prepare a customised equipment offering to suit your special needs!

How to use

Facts about the TESS expert catalogue

The TESS expert catalogue is adapted to the PHYWE reference curriculum. PHYWE's experiments fit to the content of experimental lectures and lab courses of schools, colleges and universities. The description of each experiment offers you a lot of information:

Pictograms for a quick overview of categories, related films or information:

Experiments with the Computer based measuring system Cobra4

Experiments which have received a Nobel Prize

Demo

Computer based measuring

experiments

Demonstration

Experiments with laser

Experiments with radioactivity

Product movie available click at www.phywe.com

New and completely revised experiments

Didactic literature -

comprehensive guide for every experiment

Extensive experimental literature is available for all our university level experiments. Rely on the advantages of our TESS expert experiment descriptions:

- All experiments are uniformly built up
- · Experiments cover the entire range of classical and modern biology
- Didactically adapted descriptions enables direct preparation by the student
- Developed and proven by practitioners comfortable and reliable performance
- Excellent measurement accuracy results agree with theory
- Computer-assisted experiments easy, rapid assessment of results
- Modular experimental set-up multiple use of individual devices, cost effective and flexible

Computer assisted measurement -

for your educational requirements

With computer-assisted experiments from PHYWE you rely on a system that perfectly matches the demands of modern scientific education. The corresponding software **measure** enables simple and reliable data recording, analysis and further processing.

At present, the computer assisted recording of measurement data for TESS expert university experiments - approx 50% of total - are mostly realized with the Cobra3 system. The Cobra3 system will be replaced by Cobra4 until end of 2013. Therefore a significant number of experiments are already based on Cobra4 which are shown in this catalogue. Furthermore all future Cobra4 experiments are clearly displayed aside the relevant topic.

The key advantages of Cobra4

- wireless measurement data transfer
- up to 99 sensors can be addressed simultaneously
- can be used as a hand-held measuring instrument
- wide range of sensors (30 units)

The Cobra4 interfaces:

Wireless measurement with Wireless-Link & Wireless Manager + Remote-Link

High data rate measurement with the USB-Link

Outdoor measurement with the Mobile-Link (Redesign 2013)

Digital function generator -

universal and intuitive

Features

- Universal, programmable voltage source with a bandwidth of 1 MHz and an output current of 1 A
- Can be used with Cobra4 or as a stand-alone device
- Intuitive operation via function keys and a rotary control knob
- Illuminated display for optimum visibility
- Low distortion factor and high signal-to-noise ratio for brilliant signals (acoustics/hearing)
- U = U(f) output for a particularly easy pick-up of the frequency – ideal for analysing circuits with frequency ramps
- Part of more than 25 TESS experiments

Cobra4

compatible

Human merging frequency and upper hearing threshold (P4040101)

Time resolving capability of the human eye (P4070300)

Cobra4 PHYWE

New devices -

for the Cobra4 family

Cobra4[™] Sensors

Sound level (12669-00)

Skin resistance (12677 - 00)

(12661 - 00)

Colorimeter (12634-00)

	Sound level	Skin resistance	Oxygen	Forceplate	Colorimeter
Measuring range:	3594 dBA/dBC 75130 dBA/dBC	0 to 10 µS	0 to 30% by volume (air) 020 mg/l, 0200 % (liquid)	-2 to 5 kN	4 wavelengths (LEDs), transmission 0 to 100%
Resolution:	0,1 dB	0,01 µ5	020 mg/l, 0200 %	0,5 N	0,01 %T
Max. sampling rate:	100 Hz	100 Hz	100 Hz	100 Hz	10 Hz

(12676-00)

Cobra4[™] Xpert-Link

The high-performance USB interface for high-precision measurements and universal use.

Features

- 4 integrated channels (2x current, 2x voltage), electrically isolated
- True RMS converter for all channels, AC and DC functions
- High resolution: up to 10 μV, up to 2 μA
- High sampling rates: > 1 MHz for current channels and > 5 MHz for voltage channels
- 2 trigger in and 1 trigger out (programmable control relais)
- 2 Cobra4 sensors can be connected

Cobra4

Curricula Compliant Experiments –

for your educational requirements

Innovative experimental set-ups by PHYWE play a decisive role for a succesful education of students in natural sciences, especially in biology.

PHYWE experiments are matched with the curricula of more than 30 selected universities worldwide. The interaction between PHYWE's experiments and the content of experimental lectures and lab courses has led to a comprehensive and best fitting worldwide.

The PHYWE TESS expert biology program covers almost all relevant topics for bachelor and master courses in biology!

Content1. Sem.2. Sem.3. Sem.4. Sem.5. Sem.6. Sem,Laboratory
ExperimentsMicroscopy /
6 (PPlant Physiology / Botany
10 (PEcology 1
11 (PPlant and Ani-
mal Physiology
mal Physiology
Meurobiology
5 (PHuman Physiology
Neurobiology
5 (PLecture, Lutorial,
ExperimentsExperimental
Physics*
3 (PMicroscopy / Cell Biology 2
5 (PZoology 2
6 (PEcology 2
6 (PEcology 2
6 (PSubsidiary
SubjectMathematics
6 (PBiochemistry
10 (PBiotechnology
6 (PSubsidiary and Elective Subjects
20 (PElective
SubjectMod. Genetics
6 (PBehavioural
Biology
4 (PMicrobiology
(PModern Ima-
ging Methads
6 (PInterdis.
SubjectGeneral
6 (POrganic
6 (PCommunication, Languages,
Presentation Techniques, e. g.
4 (PTheoretical
BiologyGenetics
3 (PStatistics
3 (PZoology 1
3 (PEcology 1
4 (PBachelor
ThesisGenetics
3 (PStatistics
3 (PZoology 1
3 (PEcology 3
4 (PPHYWE ExperimentsCStatistics
6 (PZoology 1
3 (PEcology 4
3 (PPHYWE ExperimentsCStatistics
3 (PZoology 1
3 (PEcology 4
3 (PPhysional
(P = Credit PointsStatistics
3 (PSchertics
3 (PBachelor Thesis
6 (P

Bachelor of Science in Biology - Reference Example

More than 80% of the experimental courses are covered by PHYWE experiments!

Use the curricula-based content on the next pages to find your topics and our corresponding experiments. The TESS expert catalogue is adapted to international university curricula making it easy for you to find experiments corresponding to your desired topic. On each page you find the detailed description of one of our university level experiments. More information including the complete experiment description is available on our website **www.phywe.com.**

2 Micro	scopy / Cell Biology 🔸		Curricular topic = main chapter of the catalogue
2.2 Cell	Components .		Curricular subtopic = sub-
P1441301	Chromoplasts	24	chapter of the catalogue
P1441201	Chloroplasts in moss leaves	24	-
P1441401	Nucleus and chromosomes	24	
2.3 Seed	Plants		
P1442301	Stem of a monocotyledonous plant	25	
P1442601	Starch as a nutritional reserve substance in plants	25	Curricular fitting PHYWE experiments
P1442101	Cross-section of a conifer (gymnosperm) leaf	25 •	
2.4 Inve	stigating Invertebrates		
P1443201	Kidney	26	-
P1443301	Liver cells (hepatocytes)	26 •	-
P1443101	Blood cells	26	-
P2538000	Basic methods in imaging of micro and nano structures with atomic force micro- scopy (AFM)	27 •	
nd the ov ting to t our hon ck www.	verview of all experiments he international Reference Curri npage! .phywe.com	culum	<page-header></page-header>

2.2 Cell (Components	
P1441301	Chromoplasts	24
P1441201	Chloroplasts in moss leaves	24
P1441401	Nucleus and chromosomes	24
2.3 Seed	Plants	
P1442301	The stem of a monocotyledonous plant	25
P1442601	Starch as a nutritional reserve substance in plants	25
P1442101	Cross-section of a conifer (gymnosperm) leaf	25
2.4 Inve	stigating Invertebrates	
P1443201	Kidney	26
P1443301	Liver cells (hepatocytes)	26
P1443101	Blood cells	26
P2538000	[deleted] Basic methods in imaging of micro and nano structures with atomic force microscopy (AFM)	27
P2538400	Imaging of biological and medical micro and nanostructure with atomic force mi- croscopy (AFM)	27
09700-99	Compact AFM, Atomic Force Microscope	28
2.5 Othe	r Animals under the Microscope	
P1443701	Planaria	29
P1443801	Nematoda	29
P1443901	Brine shrimp (Artemisia salina)	29
2.6 Othe	r Plants and Fungi	
P1444201	The spore capsules of ferns	30
P1444301	Mould fungi growing on food	31
P1444501	Colony-forming ciliates in an aquarium	31
P1444901	Bacteria	31
2.7 Liter	ature	
13290-02	TESS advanced Biology manual Micro- scopy	32

3 Ecology and Environment

3.1 Wate	er	
P4100160	Comparison of the heat capacities of wa- ter and soil with Cobra4	34
P4100560	Conductivity of various water samples with Cobra4	35
P4100760	Origin of acid rain with Cobra4	36

P4100840	The twenty-four-hour rhythm of an aquatic plant	37
P4100860	The twenty-four-hour rhythm of an aquatic plant with Cobra4	37
3.2 Air		
P4100260	The Bergmann rule: heat loss as a func- tion of the body surface area and volume with Cobra4	38
P4100360	Insulating effect of body coverage with Cobra4	39
P4100460	24-hour weather observation with Co- bra4	40
3.3 Soil		
P1521163	Salinity of soils and plant substrates with Cobra4	41
P1521063	The pH value of various soils (with Co- bra4)	42
3.4 Sets		
30837-77	TESS Biology set chemo-physical water testing	43
30834-77	Ecology case, biological water analysis	43
30839-00	Reagent case for water analysis with fil- ter photometer	44
30838-77	[deleted] TESS Applied Sciences Set Gas examination	44
30836-77	TESS Applied Sciences set examination of soil	45
30346-00	Excursion set, soil analysis	45
3.5 Liter	ature	
12622-02	TESS advanced Applied Sciences manual Cobra4 environment and outdoors	46

4 Behavioural Biology

4.1 Beha	vioural Science	
P4080300	Learning performance of humans	48
P1522260	Measuring reading skills with Cobra4	49
P1056600	Learned behaviour in fish	50
P0938300	[deleted] Agonistic behaviour in male fighting fish	50
P0938400	[deleted] Shooling behaviour in fish	50

5 Plant Physiology / Botany

5.1 Photosynthesis

P4110160 Photosynthesis (bubble counting meth- 52 od) with Cobra4

P4110260	Photosynthesis (measurement of oxygen pressure) with Cobra4	53
P4100840	The twenty-four-hour rhythm of an aquatic plant	53
P4110660	The importance of Carbon dioxide for Photosynthesis	54
P0892300	Paper chromatography of chloroplast pigments	54
5.2 Wate	er Balance	
P4110360	Transpiration of leaves with Cobra4	55
5.3 Mine	ral Balance	
P1135700	Osmosis - dependence of the osmotic pressure on the concentration	56
P4120260	Ionic permeability of the cell membrane with Cobra4	56
P1521163	Salinity of soils and plant substrates with Cobra4	57
P0898200	[deleted] Spectroscopic identification of sodium, potassium, and calcium in plant ashes	58
P1034700	Absorption of minerals by plants	58
5.4 Grov	vth and Development	
P4050200	The effect of gravity and centrifugal force on plants	59
P4110460	Glycolysis (pressure measurement) with Cobra4	60
P4110560	Glycolysis (temperature measurement) with Cobra4	61
5.5 Liter	ature	
01331-02	Demo advanced Biology Manual Cobra4 Biochemistry & plant physiology	62

6 Animal Physiology

6.1 Anim	nal Physiology	
P4010111	Recording of nerve and muscle poten- tials by mechanical stimulation at the rear end of an earthworm with Cobra3	64
P4010211	Recording of nerve and muscle poten- tials by mechanical stimulation at the front end of an earthworm with Cobra3	64
P4010311	Recording of nerve potentials after the electrical stimulation of an anaesthet- ised earthworm with Cobra3	65
P4010462	Model experiment illustrating the devel- opment of resting potential with Cobra4	65
P4060200	Preferential temperature in insects	66
P0911700	[deleted] Humidity preferendum of soil arthropods	67

P4070100	Optomotor response in insects	68
P4090100	Volumetric measurement of breathing in small animals	69
P5950400	[deleted] Ultrasonic investigation with eye dummy	70

7 Human Physiology

7.1 Hear	t and Circulatory System	
P4020160	Human electrocardiography (ECG) with Cobra4	72
P4020360	Blood pressure measurement with Co- bra4	73
P4020460	Changes in the blood flow during smoking with Cobra4	74
P5950100	[deleted] Doppler sonography	75
P1522160	We investigate our physical fitness - the heart under stress with Cobra4	76
P4020211	[deleted] Phonocardiography: Cardiac and vascular sonic measurement (PCG) with Cobra3	77
P4020260	Phonocardiography: Cardiac and vascular sonic measurement (PCG) with Cobra4	77
P5950200	[deleted] Ultrasonic Time Motion Mode	78
7.2 Muse	culature	
P4030160	Electromyography (EMG) on the upper arm with Cobra4	79
P4030211	Muscle stretch reflex and determination of the conducting velocity (with Cobra3)	80
P4030260	[deleted] Muscle stretch reflex and de- termination of the conducting velocity (with Cobra4)	80
7.3 Hear	ing Sense	
P4040101	Human merging frequency and upper hearing threshold	81
P4040215	Hearing threshold and frequency differ- entiating threshold in humans with Co- bra3	81
P4040311	[deleted] Acoustic orientation in space with Cobra3	82
7.4 Visua	al Sense	
P4070300	Time resolving capability of the human eye	83
P4070200	Determination of the human visual field	83
P4070600	Additive colour mixing and colour mask- ing	83
P4070760	Electronystagmography (ENG) with Co- bra4	84

P4070560	Human electrooculography (EOG) with Cobra4	85
7.5 Othe	r Senses	
P4060360	Regulation of human body temperature with Cobra4	86
P4070400	Test of human reaction capacity	87
7.6 Resp	iration	
P4090260	Measurement of the respiratory rate with Cobra4	88
P8001060	How much air can our lungs contain with Cobra4?	88
P8001160	Direct determination of lung volume from a spirogram	88
P8001260	Does the lung volume depend on how tall you are?	88
P8001360	Diagnosis of lung disease (FEV) with Co- bra4	89
7.7 Liter	ature and Sets	
12673-12	TESS advanced Biology manual Cobra4 Electrophysiology: ECG, EMG, EOG	90
12673-89	TESS advanced Applied Sciences set Elec- trophysiology, EP with english manual	90

8 Biochemistry

8.1 Biocl	nemistry	
P4120260	Ionic permeability of the cell membrane with Cobra4	92
P4120360	Determination of the Michaelis constant with Cobra4	93
P4120460	Substrate inhibition of enzymes with Co- bra4	93
P4120560	Enzyme inhibition (poisoning of en- zymes) with Cobra4	93
P4120140	[deleted] Determination of the isoelec- tric point of an amino acid (glycine) with Cobra3	94

9 Microbiology

9.1 Micro	obiology	
P4140100	Fundamental microbiological working methods	96
P4140500	Evidence of the effect of antibiotics, chemotherapeutics and disinfectants	96
P4140200	Evidence of the spread of bacteria	97
P4100900	Microbial decomposition of mineral oil	97

P4140300	Microscopy of bacteria	98
P4140400	Determination of the microbial count	99
P2538400	[deleted] Imaging of biological and med- ical micro and nanostructure with atom- ic force microscopy (AFM)	100
P2538000	[deleted] Basic methods in imaging of micro and nano structures with atomic force microscopy (AFM)	100

10 Neurobiology

10.1 Basics

P4010462	Model experiment illustrating the devel- opment of resting potential with Cobra4	102
P4120260	Ionic permeability of the cell membrane with Cobra4	103
10.2 Ner Network	ve Cell – Functions, Interactions ar s	nd
P4010511	Neurosimulator: membrane time con- stant and low-pass filtering with Cobra3	104
P4010611	Neurosimulator: mode of operation of excitatory synapses with Cobra3	104
P4010560	[deleted] Neurosimulator: membrane time constant and low-pass filtering with Cobra4	104
P4010711	Neurobiology: the nerve cell with Cobra3	105
P4010760	[deleted] Neurobiology: the nerve cell with Cobra4	105
P4010860	[deleted] Neurobiology: nerve cell inter- actions with Cobra4	105
P4010811	Neurobiology: nerve cell interactions (with Cobra3)	105
P4010911	Neurobiology: neural networks	106
P4011011	Neurobiology: complex neural networks with Cobra3	106
P4010960	[deleted] Neurobiology: neural networks with Cobra4	106
10.3 Stir	nuli Transmission	
P4010111	Recording of nerve and muscle poten- tials by mechanical stimulation at the rear end of an earthworm with Cobra3	107
P4010211	Recording of nerve and muscle poten- tials by mechanical stimulation at the front end of an earthworm with Cobra3	107
P4010311	Recording of nerve potentials after the electrical stimulation of an anaesthet- ised earthworm with Cobra3	107
10.4 Lite	erature	
16506-02	Labortory Experiments Biol., L.V.	108

11 Biotechnology

11.1 Bio	technology	
P1313600	Fermentation of molasse to ethanol with yeast	110
P1313700	[deleted] Microbial synthesis of ethanol by Zymomonas mobilis subsp. mobilis	111
P1313800	[deleted] Production of amino acids by fermentation of Corynebacterium glutamicum	112
P1313900	[deleted] Bacteria and mining - microbi- al extraction of ore by Thiobacillus fer- rooxidians and thiooxidans	113
P1314000	[deleted] Immobilised cells in the service of biotechnology - microbial synthesis of acetic acid with Acetobacter aceti	114

12 Modern Imaging Methods

12.1 X-ra	ay Imaging	
P2550100	Computed tomography	119
09180-88	XRCT 4.0 X-ray Computed Tomography upgrade set	120
09057-40	XR 4.0 X-ray Direct Digital Image Sensor (XRIS)	121
09057-42	XR 4.0 X-ray CT Z-rotation stage (XRStage)	121
14421-61	XR 4.0 Software measure CT	121
P2540020	Radiographic examination of objects	123
P2541901	Contrast medium experiment with a blood vessel model	124
P2542001	Determination of length and position of an object which can not be seen	125
P2540030	Qualitative examination of the absorption of X-rays	126
P2541101	Absorption of X-rays	127
P2541801	X-ray dosimetry	128
P2540040	Ionizing effect of X-radiation	128
12.2 Mag	gnetic Resonance Imaging	
P5942100	Fundamental principles of Nuclear Mag- netic Resonance (NMR)	129
P5942400	Magnetic Resonance Imaging (MRI) I	129
P5942200	Relaxation times in Nuclear Magnetic Resonance	129
P5942300	Spatial encoding in Nuclear Magnetic Resonance	129
09500-99	Compact MRT	130

12.3 Ultrasonic Imaging			
	P5161200	[deleted] Ultrasonic computertomo- graphy	131
	P5160200	[deleted] Ultrasonic echography (A-Scan)	132
	P5160300	[deleted] Ultrasonic echography (B-Scan)	132
	P5950100	[deleted] Doppler sonography	133
	P5950200	[deleted] Ultrasonic Time Motion Mode	134
	P5950300	[deleted] Ultrasonic investigation with breast dummy	134
	P5950400	[deleted] Ultrasonic investigation with eye dummy	134
	12.4 Nar	io Imaging	
	P2538000	[deleted] Basic methods in imaging of micro and nanostructures with atomic force microscopy (AFM)	135
	P2538400	[deleted] Imaging of biological and med- ical micro and nanostructure with atom- ic force microscopy (AFM)	136
	09700-99	Compact AFM, Atomic Force Microscope	137
	12.5 Lite	erature	
	01200-02	TESS expert Physics Handbook X-Ray Experiments	138
	01232-02	Laboratory Experiments Application of ultrasounds in medicine, material scien- ces and industry	139
	01233-02	Laboratory Experiments Magnetic Reson- ace Tomography (MRT)	139

PHYWE supplies more than

50 Nobel Prize awarded experiments

The Nobel Prize is awarded annually in the disciplines of physics, chemistry, physiology or medicine, literature and peace. For scientists and researchers, it is the highest award.

PHYWE supplies more than 50 Nobel Prize awarded experiments. From Conrad Röntgen to Max Planck or Albert Einstein. Experiments in the footsteps of Nobel Prize winners. PHYWE made Nobel Prize experiments understandable.

Nobel Prize awarded experiments (Selection)

1900

- 1901 Wilhelm Conrad Röntgen
- 1901 Jacobus Henricus van 't Hoff
- 1902 Hendrik A. Lorentz, Pieter Zeeman
- 1902 R. Ross
- 1903 Henri Becquerel, Pierre Curie, Marie Curie
- 1907 Albert A. Michelson
- 1908 Ernest Rutherford

1910 ...

1911 – A. Gullstrand 1914 – Max von Laue 1915 – W. H. Bragg, W. L. Bragg 1918 – Fritz Haber 1918 – Max Planck

1920 ...

- 1921 Albert Einstein 1922 – Niels Bohr 1923 – Robert A. Millikan
- 1924 Manne Siegbahn
- 1924 Willem Einthoven
- 1925 James Franck, Gustav Hertz
- 1927 Arthur H. Compton
- 1927 C.T.R. Wilson
- 1929 Louis de Broglie

1930 ...

- 1930 Karl Landsteiner
- 1931 Carl Bosch
- 1932 W. Heisenberg
- 1932 C.S. Sherrington, E.D.Adrian
- 1936 Victor F. Hess, Carl D. Anderson

1940 ...

- 1943 Otto Stern
- 1945 Wolfgang Pauli
- 1948 Arne Tiselius
- 1952 F. Bloch, E.M. Purcell

1950 until today

- 1954 Max Born, Walther Bothe
- 1971 Dennis Gabor
- 1979 A.M. Cormack, G.Hounsfield
- 1986 Heinrich Rohrer, Gerd Binnig
- 2003 P.C. Lauterbur, Sir P. Mansfield
- 2009 Charles K. Kao

Cooperations – Reliable partner for education

There's a way to do it better – find it.

Thomas Edison

The share of ideas and transfer of knowledge between academia and PHYWE is one of our major attempts in R&D. Our network is spread out worldwide and comprises cooperation projects, research assignments, and the education of expert staff.

Some breathtaking novelties of our new XR 4.0 plattform are one by one the result of fruitful cooperation in this regard - thank you!

HOCHSCHULE FÜR ANGEWANDTE WISSENSCHAFT UND KUNST HILDESHEIM/HOLZMINDEN/GÖTTINGEN FACULTY OF NATURAL SCIENCES AND TECHNOLOGY

2.1	Overview Microscopes	20
2.2	Cell Components	24
2.3	Seed Plants	25
2.4	Investigating Invertebrates	26
2.5	Other Animals under the Microscope	29
2.6	Other Plants and Fungi	30
2.7	Literature	32

SWIFT available from PHYWE -

Microscopes for all areas of applications

SWIFT has been a globally renowned brand for top-quality microscopes for more than 50 years. Microscopes and stereo microscopes made by SWIFT are designed especially for teaching purposes, which is why they are ideally usable for students, teachers, lecturers, and participants of basic university courses. Their robust design makes them highly durable and perfectly suitable for daily use at schools and universities. Their optical and mechanical quality reflects first-class workmanship and they are particularly easy to use so that even untrained users can quickly produce fascinating images.

In addition to classic microscopes, we offer a series of SWIFT microscopes with integrated digital cameras that ideally meet the requirements of teachers and lecturers. You will surely find the perfect microscope for your individual needs and with an optional price/performance ratio in line with your budget among our new SWIFT microscopes.

Top features of SWIFT microscopes:

- All-metal design: the all-metal housing and the exclusive use of metal parts inside the microscope ensure a long and trouble-free service life
- · Modern, ergonomic design for working without fatigue
- No edges or sharp angles in order to reduce the risk of injury
- Integrated cable holder trouble-free storage
- Lead-free objectives and eyepieces
- Ergonomic handle for the easy transport of the microscope
- Energy-efficient LED illumination: cold light, low current consumption, and durable
- Variable and controllable illumination for all models; 5 adjustable illumination combinations for stereo microscopes
- Rechargeable LED illumination for mains-power-independent work with battery check via an LED line display
- "Student-proof" student microscopes: objectives and eyepieces secured against removal
- Mechanical and microscope stages with state-of-the-art stage clips: 1-finger-operation

NEW IN EUROPE!

2 Microscopy / Cell Biology 2.1 Overview Microscopes

Microscope Classes -

the right product for every application

2 Microscopy / Cell Biology 2.1 Overview Microscopes

PHYWE Systeme GmbH & Co. KG • www.phywe.com

2.2 Cell Components

P1441301 Chromoplasts

Peel off a piece of skin from the red-pepper fruit using forceps.

Principle

The fruits and blossoms of many plants possess intensively bright colors. The colorful fruit attracts animals, are devoured by them and the seeds are excreted at other places. This is how the plant is dispersed.

Colorful blossoms attract insects that harvest nectar from the blossoms. Pollen is concomitantly transported from plant to plant. This ensures fertilization.

Yellow and red pigments are mostly located in particular cell organelles, the chromoplasts.

Task

Describe shape and arrangement of the chromoplasts in a plant cell!

What you can learn about

- Chromoplasts
- Cell organelles
- Blossoms

Main articles

SWIFT Microscope M3601C 63	020-99	1
Dropping pipette with bulb, 10pcs 47	131-01	1
Scalpel holder 64	615-00	1
Scalpel blades, rounded tip, 10 off 64	615-02	1
Tweezers, straight, pointed, 120mm 64	607-00	1

Related Experiments	
Chloroplasts in moss leaves	
P1441201	
Nucleus and chromosomes	
P1441401	

SWIFT student microscope M3601C

63020-99

The stem of a monocotyledonous plant

The thin sections are placed directly in the drop on the slide using forceps.

Principle

The stem of plants must accomplish various functions. It supports the leaves, the lateral branches, and the blossoms. The mechanical supportive tissue (collenchyma) is responsible for the necessary stability and elasticity. Did you ever come to think about how a 20 m-tall tree is capable of transporting water all the way from its roots to its crown? Or how it may be possible that assimilates from the leaves ever arrive at the roots? We want to explore this pathway of transportation, for which all plants possess a one-way traffic system. The vascular bundles contain vessels for transporting water from the bottom up, and sieve tubes for transporting assimilates from the top down to the bottom. The structural arrangement of the vascular bundles in the dicotyledonous plants differs distinctly from the arrangement found in the monocotyledonous plants.

Task

• Explore the structure of the stem and the arrangement of the vascular bundles in monocotyledonous plants!

What you can learn about

- Stem; Monocotyledonous plants
- Leaves; Lateral branches
- Blossoms; Vascular bundles

Main articles

63020-99	1
13290-10	1
47131-01	1
64607-00	1
64691-00	1
	63020-99 13290-10 47131-01 64607-00 64691-00

Related Experiments

Starch as a nutritional reserve substance in plants

P1442601

Cross-section of a conifer (gymnosperm) leaf

P1442101

PHYWE Systeme GmbH & Co. KG • www.phywe.com

2.4 Investigating Invertebrates

P1443201 Kidney

Cut a small strip of tissue out of the renal cortex with the scalpel.

Principle

Compared to the liver, the kidney is a rather small organ, however, it is the most significant excretion organ in humans apart from the skin and the lungs. Water and the substances dissolved in it are first transferred to the renal corpuscle (Malpighian body). The liquid travels through delicate tubes, i.e. renal tubes, while a part of the substances is returned to the blood.

Ultimately, the excessive proportion of water, salts, and decomposition products are passed on to the urinary bladder and then excreted.

Task

Explore and explain the morphology of the renal corpuscles.

What you can learn about

- Kidney
- Excretion organ
- Renal corpuscle
- Delicate tubes

Main articles

SWIFT Microscope M3601C	63020-99	1
Dropping pipette with bulb, 10pcs	47131-01	1
Tweezers, straight, pointed, 120mm	64607-00	1
Microscopic slides, 50 pcs	64691-00	1
Cover glasses 18x18 mm, 50 pcs.	64685-00	1

Related Experiments

Liver cells (hepatocytes)

P1443301

Blood cells

Basic methods in imaging of micro and nano structures with atomic force microscopy (AFM)

P2538000

Topography of Skin Cross-Section (60 micrometer), Staphylococcus Bacteria (10 micrometer), Human hair (40 micrometer), and Butterfly Wing (10 micrometer) FLTR.

Principle

Approaching a sharp silicon tip mounted on a cantilever to a sample surface leads to an atomic scale interaction. The result is a bend of the cantilever which is detected by a Laser. In static mode the resulting deflection is used to investigate the topography of the sample surface line-by-line using a feedback loop. In dynamic mode the cantilever is oscillated at fixed frequency resulting in a damped amplitude near the surface. The measurement parameters (setpoint, feedback gain,...) play a crucial role for image quality. The dependence on the imaging quality is investigated for different nano structured samples.

Tasks

- 1. Set-up the microscope and start up the software. Mount a cantilever (with tip) and approach the tip towards a sample.
- 2. Investigate the influence of the scanning parameters on the imaging quality and performance, e.g. PID gain, setpoint (force), vibrational amplitude, and scanning speed. Use both static and dynamic force mode.
- 3. Image 7 different samples (microstructures, carbon nano tubes, skin cross-section, bacteria, CD stamper, chip structure, glass beads) by optimizing the parameters respectively.

What you can learn about

- Atomic Force Microscopy (AFM)
- Lennard-Jones potential
- Imaging of nano structures
- Static Force Mode
- Dynamic Force Mode
- Feedback Loop
- Force
- Vibrational Amplitude

Main articles

Compact-Atomic Force Microscope (AFM)

09700-99 1

Related Experiment

Imaging of biological and medical micro and nanostructure with atomic force microscopy (AFM)

2.4 Investigating Invertebrates

Compact AFM, Atomic Force Microscope

Function and Applications

Compact and easy to use atomic force microscope to visualize and image structures on the micro and nano meter scale. Developed for educational purposes in practical lab course and pre-research labs in physics, chemistry, life sciences and material sciences. Also suitable to determine material characteristics (e.g. stiffness, magnetization, charging, material and phase contrast) and for manipulation (e.g. lithography).

Benefits

- Out-of -the-box device with integrated damping plate and control unit underneath
- Complete set, incl. Sample Set, Cantilever, Tools and Consumables
- Tip Scanner AFM for standard cantilever
- Easy and safe cantilever exchange and use: Flip mechanism with automatic laser switch off,
- No laser alignement, mechanical stopper for longer lifetime of cantilevers
- Digital top view camera for easy positioning and side view lens for easy and fast approach
- Portable and compact: transportable, easy to install with a small footprint
- Easy to use: Ideal for nanotechnology education, preparing students for their work on high-level research devices, and outreach

Equipment and technical Data

- Scan head with integrated control-unit on vibration-isolated experimentation board: 21cm x 21cm x 18cm, USB 2.0 interface, 16 bit DA converter (XYZ), 16 bit AD converter (7 channels)
- Max scanning speed 60 ms/line, up to 2048x2048 data points
- Scan type (tip scanner): Linear low voltage electro magnetic
- Scan Range: 70 micro meter (1.1 nm resolution)
- Z-range: 14 micro meter (1.1 nm resolution); Z noise level (RMS): 0.6 / 0.5 nm (static / dynamic); Automatic approach: vertical, range 4.5 mm
- Sample: max. 13 mm in diameter, horizontal mount, LED illumination, Micrometer translation stage xy: min. +/- 5 mm
- Cantilever Aligment: automatic adjustment, alignment grooves from various suppliers; Camera system for top view: USB digital color, 3.1 M pixels
- Modes of operation: Static Force, Dynamic Force, Force Distance Spectroscopy, Amplitude Distance Spectroscopy
- Other modes (MFM, AFM, Phase contrast, lithography and advanced spectroscopy modes)

- available with upgrade options material and spectroscopy and manipulation
- User expandability (scripting) available (upgrade option); Set of 10 Cantilever, 6 samples, Toolset
- Software for measuring, manipulation, analysing and visualization, Handbook and Quick Installation Guide

Accessories

- Material upgrade (Art. 09701-00): Additional Operating Modes (Phase Contrast, EFM, MFM, Force Modulation, Spreading Resistance), set of samples and cantilevers
- Spectroscopy and Manipulation upgrade (Art. 09702-00): Additional Operating Modes (Advanced Spectroscopy, Lithography (scratching, oxidation), Manipulation (oxidation, cutting and moving/pushing of nanoparticles)), User expandability (Visual basic, LabView, etc.), set of cantilevers and samples
- Side View Camera System (available 2013), other samples

09700-99

Staphylococcus Bacteria, 10 μm and Skin Cross-Section, 60 $\mu m.$

CD Stamper, 20 µm and Aluminum Foil, 60µm.

PS/PMMA films: Topography and Phase Contrast, 3µm.

PHYWE excellence in science

Planaria

P1443701

Siphon a planarian from the lateral wall and examine it under the microscope with the low-est power.

Principle

Planarians belong to the class of the free-living flatworms (Turbellaria) and these, in turn, belong to the phylum of platyhelminthes (flatworms). They occur in both freshwater and marine environments, feeding as predators, for example, on the eggs of fishes and shrimps in aquaria. They therefore present a problem to breeders of ornamental fishes. On account of its large number of stem cells, the planarian Dugesia tigrina is of great significance to research.

Task

Gather information as to why they are feared and explore the structure of these flatworms.

What you can learn about

- Planarians
- Flatworms

Main article

ridili ditities	
SWIFT Microscope M3601C 63020-99	1
Dropping pipette with bulb, 10pcs 47131-01	1
Magnifier, plastic, 5x, d=30mm 88002-01	1
Microscopic slides, 50 pcs 64691-00	1
Cover glasses 18x18 mm, 50 pcs. 64685-00	1

Related Experiments

Nematoda

P1443801

Brine shrimp (Artemisia salina)

2.6 Other Plants and Fungi

P1444201 The spore capsules of ferns

Apply the solution to the slide and make numerous very thin cuts through the leaf containing the sori immersed in it.

Principle

Weedy fern plants are often found in moist forests. In the tropical regions, however, there are even tree ferns that can be up to 10 meters tall. The ferns do not belong to the flowering plants and therefore do not produce any seeds. Like the mosses, they reproduce by spores. On the underside of a frond (the leaf), there are small aggregations of spore capsules (sori). They show a regular arrangement and a species-specific pattern. The fern expert is able to identify a species on account of this characteristic pattern.

Task

Examine the spore capsule of a fern plant!

What you can learn about

- Ferns
- Spore capsules
- Frond

Main articles

SWIFT Microscope M3601C 63	020-99 1
Chemicals set for TESS Microscopy (for up to 10 workgroups) 13	290-10 1
Dropping pipette with bulb, 10pcs 47	131-01 1
Scissors, straight, pointed, I 110mm 64	623-00 1
Scalpel holder 64	615-00 1
Scalpel blades, rounded tip, 10 off 64	615-02 1
Tweezers, straight, pointed, 120mm 64	607-00 1

Chemicals set for TESS Microscopy(for up to 10 workgroups)

Function and Applications

Chemicals set for TESS Microscopy (for up to 10 workgroups).

Equipment and technical data

Contents:

- Acetic acid 99 %, 250 ml; Raw alcohol (96% and 70%)
- Isopropanol, absolute, 250 ml; Rotihistol, 250 ml
- Glycerol, 100 ml; Canada balsam (malinol), 50 ml
- Sodium cloride; Safranine solution 1%, 50 ml
- Lugol's solution, 100 ml; Modified azure eosine methylene blue solution (Giemsa), modified, 50 ml
- Neutral red, 5 g; Carmineacetic acid solution, 50 ml
- Methyl green, 10 g; Distilled water, 500 ml

13290-10

P1444301

P1444501

P1444901

Principle

Surely you have seen on several occasions that molds have grown on food. Molds live on organic matter composed of carbohydrates, fat, and protein. As foodstuffs contain these substances and the required moisture, they make an ideal substrate. The macroscopically visible mold is just one part of the fungus. It only emerges when the food is fully

interspersed with mycelial threads (hyphae). As many molds produce toxic substances, moldy foodstuff should not be consumed.

For more details refer to www.phywe.com

Mould fungi growing on food

Colony-forming ciliates in an aquarium

NEW

JEN

Principle

Life in the aquarium is more variegated than one may perceive at first glance. You can not only see how fish feed but also observe the movements of gill covers and how water flows through a fish's body. Besides you can observe mating behavior and territorial fights among the fishes. But did you ever see that fishes eat something from the glas pane which is invisible to the human eye? Small organisms settle on the glas pane and on water plants as well. With a little trick you can get some of them under your microscope.

For more details refer to www.phywe.com

Bacteria

For more details refer to www.phywe.com

acteria are

Bacteria are real life artists: Some of the organisms belonging to this group find adequate life conditions everywhere on earth, in the depths of the oceans, on highest mountains, in hot springs, and in the Arctic. Bacteria can be compared with regard to various aspects, whether they are pathogens or of beneficial use, whether they can only survive or die in an atmosphere containing oxygen. Today you will learn to differentiate bacteria on account of their various shapes.

2.7 Literature

TESS advanced Biology manual Microscopy

Article no. 13290-02

Description

Experimental literature for 50 experiments with:

1. Student worksheets with black/white drawings for easy copying and Teacher's sheets with colored digital microscopy images.

2. CD-ROM with master copies of: color presentation files (PDF format) for 47 microscopy topics to print transparencies or to show directly via a video beamer and PDF files of student worksheets and teacher's sheets.

Topics

- Basics of microscopy
- Worktechniques
- Cell components
- Seed plants and ferns
- Vertebrates and invertebrates
- Fungi
- Protists
- Prokaryotes

Equipment and technical data

200 pages

This documentation contains the following experiments:

The components of a microscope MI 1.1 P1440001

Working with the microscope **P1440101**

Microscopic magnification **P1440201**

Preparation of temporary microscopic slides **P1440301**

Manual section technique **P1440401**

Staining of living organisms **P1440501**

Rapid staining technique **P1440601**

Fixation and staining **P1440701**

Embedding in Canada balsam **P1440801** Preparation of reagents **P1440901** The cell wall of the onion **P1441001** The cellular membrane of animal cells **P1441101**

Chloroplasts in moss leaves **P1441201**

Chromoplasts **P1441301**

Complete experiment list see www.phywe.com

13290-02

Material

TESS advanced Biology set Microscopy 15290-88

Set of TESS Microscopy MIC, with CD-ROM and Microscope SWIFTM3-M 15290-33

Accessories

TESS advanced Microscopy MIC necessary accessories for 1 group

13443-88

TESS advanced Microscopy MIC consumables for 10 groups 13444-88

P1441301 - Chromoplasts - page 24

Ecology and Environment

3.1	Water	34
3.2	Air	38
3.3	Soil	41
3.4	Sets	43
3.5	Literature	46
3 Ecology and Environment 3.1 Water

P4100160 Comparison of the heat capacities of water and soil with Cobra4

Behaviour of temperature and temperature difference.

Principle

These measurements help to quickly and simply introduce the term "heat capacity". The students learn on which characteristics temperature changes of surfaces depend. As practical example, reference can always be made here to the hot sand at the seaside.

Tasks

- 1. To prepare comparison curves showing the different heat capacities of water and land.
- 2. To interpret data on climate and to explain how onshore and offshore wind originate.

What you can learn about

- Heat capacity
- Heat radiation
- Origin of climatic fluctuations
- Generation of onshore and offshore winds

Main articles		
Software Cobra4 - multi-user licence	14550-61	1
Cobra4 USB-Link	12610-00	1
Ceramic lamp socket E27 with reflector, switch, safety plug	06751-01	1
Cobra4 Sensor-Unit Temperature, semiconductor -20110 °C	12640-00	2

Conductivity of various water samples with Cobra4

P4100560

Conductivity of drinking water, depending on its geographic location in and around Göttingen (Germany).

Principle

This experiment shows how much the quality of drinking water of various locations in the same region may vary. The comparison of tap water with bottled mineral water and distilled water leads to surprising results.

Tasks

- 1. To determine the condutivity of various water samples.
- 2. To discuss the reasons for the big differences in conductivity.

What you can learn about

- Conductivity of water samples
- Rainwater
- Drinking water
- Aquarium water
- River water
- Mineral water
- Electrolytes waste water
- Eluviation
- Contamination by inorganic salts
- Horizontal/vertical zones

Main articles

Software Cobra4 - multi-user licence	14550-61	1
Cobra4 Wireless-Link	12601-00	1
Cobra4 Sensor-Unit Conductivity, with		
stainless steel electrodes	12633-00	1
Cobra4 Wireless Manager	12600-00	1

Cobra4 Sensor-Unit Conductivity, with stainless steel electrodes

Function and Applications

The Cobra4 Sensor-Unit Conductivity/Temperature with stainless steel electrodes can be connected directly to the Cobra4 Wireless-Link, the Cobra4 Mobile-Link or the Cobra4 USB-Link using a secure and reliable plug-in / lockable connection.

Benefits

Particularly good application for school and outdoor experimentation, as the measuring gauge is already firmly connected.

3 Ecology and Environment

3.1 Water

P4100760 Origin of acid rain with Cobra4

pH-time curve for SO₂, NO₂ and CO₂.

Principle

Acid rain is caused by emissions from power plants, households and traffic. Gases such as sulfur dioxide, nitrogen dioxide and carbon dioxide dissolve in rainwater, the products of which form the acids (acids containing sulfur, nitrous acid, nitric acid, carbonic acid). Acid rain reduces the pH of soils and waters. Environmental damage such as forest dieback is the result.

In this experiment acid rain will be produced artificially by adding the gases SO_2 , NO_2 and CO_2 to water. The fall of the pH value is registered.

Task

Add the gases $\text{SO}_2,\,\text{NO}_2$ and CO_2 to water and record the fall of the pH value.

What you can learn about

- Acid rain
- Anthropogenic air pollution
- Damage to forests
- Acidification of soil and water
- Gaseous and aerosol emissions

Main articles

Software Cobra4 - multi-user licence 1	L4550-61	1
Cobra4 USB-Link 1	L2610-00	1
Cobra4 Sensor-Unit pH, BNC connector	L2631-00	1

Function and Applications

The Cobra4 Sensor-Unit pH, BNC connection is a measuring recorder for pH measurements, which is controlled by micro-controller.

Benefits

- It can be fitted with a pH probe, in order to measure pH values
- The unit can be connected to the Cobra4 Wireless-Link, the Cobra4 Mobile-Link or the Cobra4 USB-Link using a secure and reliable plug-in / lockable connection.

Equipment and technical data

<u>рН:</u>

Measuring range: 0...14 pH; Resolution: 0.01 K; Measuring accuracy: ± 0.5 %

General:

Data flow rate: 5 Hz; Dimensions (mm): 62x63; Weight: 70 g

The twenty-four-hour rhythm of an aquatic plant

P4100840

Curve of pH against time for the reaction of waterweed in daylight.

Principle

Plants produce oxygen by photosynthesis under the influence of light (during the day). Carbon dioxide is hereby consumed. In the dark (at night), however, they consume oxygen and produce carbon dioxide.

Task

1. This day and night rhythm in an aquatic plant has to be followed over a longer period by pH measurements.

What you can learn about

- Photosynthesis
- Daylight reaction
- Dark reaction
- Diurnal rhythm
- Nocturnal rhythm
- pH measurement
- Carbon dioxide consumption and production

Main articles

Cobra3 Chem-Unit, USB	12153-50	1
Ceramic lamp socket E27 with reflector,		
switch, safety plug	06751-01	1
Software Cobra3 Chem-Unit	14520-61	1
pH-electrode, plastic body, gel, BNC	46265-15	1
Compressed gas, oxygen, 12 I	41772-05	1
Power supply 12V / 2A	12151-99	1

Cobra4 Experiment - available 2013

The twenty-four-hour rhythm of an aquatic plant with Cobra4

P4100860

pH-electrode, plastic body, gel, BNC

Function and Applications

This simple pH single rod measuring cell, consisting of a glass electrode and a silver / silver chloride reference electrode with fixed cable with BNC plug, with plastic shaft is distinguished by its robust design.

Benefits

- Low- maintenance because of gel electrolyte.
- The glass membrane of the pH electrode is relatively well protected against mechanical damage through the shaft that extends through the membrane.

P4100260

The Bergmann rule: heat loss as a function of the body surface area and volume with Cobra4

The behaviour of temperature and temperature difference.

Principle

This experiment confirms the Bergmann rule which says that animals in cold regions are larger than near relatives in hotter regions. The reason for this is that larger animals experience a smaller heat loss than smaller animals, as their body surface area is smaller in relation to their volume than that of a smaller animal. Using a model consisting of different sized round bottom flasks that are filled with water the heat loss for different relationships between volume and body surface area is illustrated.

Tasks

- 1. To prepare a graph which demonstrates the different heat losses with different volumes and body surface areas.
- 2. To interpret data on the settling of warm and cold regions by lager or smaller animals.

What you can learn about

- Bergman rule
- Heat losses
- Larger versus smaller animals
- Cooler versus warmer regions of the world

Main articles

Software Cobra4 - multi-user licence	14550-61	1
Cobra4 USB-Link	12610-00	1
Cobra4 Sensor-Unit Temperature,		
semiconductor -20110 °C	12640-00	2

Cobra4 Sensor-Unit Temperature

Function and Applications

Semiconductor sensor to measure temperature in the range of $\mathcal{-20...110}^{\circ}$ C.

Benefits

 Can be connected directly to the Cobra4 Wireless-Link, the Cobra4 Mobile-Link or the Cobra4 USB-Link.

Equipment and technical data

- Sensor jacket: stainless steel
- Measuring range: -20...+110° C
- Absolute accuracy: ± 1° C
- Resolution: 0.05° C
- Time constant: 7 s
- Data flow rate: 200 Hz
- Connecting port: sub-D-15-pole
- Sensor length / diameter: 200 mm, 6 mm
- Cable length: 120 cm
- Weight: 125 g

Insulating effect of body coverage with Cobra4

P4100360

The insulating effect of body coverage.

Principle

This experiment shows that warm-blooded animals are able to use their fur to keep their body temperature constant. The coat of feathers of birds is another form of natural insulating covering to protect against cold. The insulating effect of different types of body coverage (clothing/fur) is presented using a diagram.

Tasks

- 1. To prepare curves showing the insulation effect of various body coverage's.
- 2. To discuss the reason of different isolating characteristics.

What you can learn about

- Insulation effects
- Body coverage's
- Coat of animals
- Fur
- Wool
- Feathers

Main articles

Software Cobra4 - multi-user licence	14550-61	1
Cobra4 Wireless-Link	12601-00	1
Cobra4 Wireless Manager	12600-00	1
Cobra4 Sensor-Unit Temperature,		
semiconductor -20110 °C	12640-00	1
Gasket for GL 18, 6mm hole, 10pcs	41239-03	1

Cobra4 Wireless-Link

Function and Applications

Interface module for the radio-based transmission of sensor measuring values in conjunction with the Cobra4 wireless manager.

Benefits

- All Cobra4 Sensor-Units can be quickly connected using a secure and reliable plug-in / lockable connection.
- All Cobra4 measuring sensors are easy to plug in and automatically detected.
- The radio network with the Cobra4 Wireless Manager is established automatically and is extremely stable, as it uses its own radio protocol.
- Up to 99 Cobra4 Wireless-Links can be connected to one Cobra4 Wireless-Manager.

3 Ecology and Environment 3.2 Air

P4100460 24-hour weather observation with Cobra4

Temperature and relative humidity.

Principle

Set up your own weather station with the compact Cobra4 Weather multisensor with little means. The sensor shows the relations between air pressure, humidity, temperature, and brightness. Fluctuations over a period of 24 hours are shown as an example, but the same set-up also enables longterm measurements to be carried out.

Tasks

In a 24-hour long-term measurement the course of luminosity is recorded in the immediate vicinity of a window. The dependence on the season, the geographical location and the current degree of cloudiness, fog etc. has to be discussed.

What you can learn about

- Long-term measurement
- Course of luminosity
- Seasonal influences
- Geographical location
- Cloudiness
- Fog

Main articles

Software Cobra4 - multi-user licence	14550-61	1
Cobra4 Sensor-Unit Weather: Humidity, Air pressure,Temperature, Light intensity,		
Altitude	12670-00	1
Cobra4 USB-Link	12610-00	1

Cobra4 Sensor-Unit Weather

Function and Applications

Depending on application type, the Cobra4 Sensor-Unit Weather can be connected to the Cobra4 Wireless-Link, the Cobra4 Mobile-Link, the Cobra4 USB-Link oder the Cobra4 Junior-Link using a secure and reliable plug-in/ lockable connection.

Benefits

- At the same time, the following measuring parameters may be recorded: air pressure, relative humidity, air temperature, brightness, height
- Ideal for use in outdoor experiments, on class trips or for project or school hiking days.

Salinity of soils and plant substrates with Cobra4

P1521163

Setup for an additional experiment.

Principle

Demonstration experiment using wireless data communication to send readings to a large-size display. How suitable are certain soils and plant substrates in terms of plant nutrition? This experiment is concerned with the measurement of conductivity, which gives an indication of which of the studied soils and plant substrates already contain nutrient salts necessary for the growth of plants and which ones would be better if nutrients were added in the form of fertiliser. Plants gain their nutrition in the form of salt ions from the soil. The most important of the 16 nutrients which plants need to grow are nitrogen in the form of nitrates and ammonia, phosphorus in the form of phosphates and potassium in the form of potassium salts. In addition, soils need to have lime (calcium carbonate) to reduce their acidity (reduction in pH). For agricultural purposes, such nutrients are added to the soil in the form of inorganic fertilisers. For house plants, fertiliser-enriched potting soil is used.

Task

Measure the conductivity of the samples in the supernatant and note the values.

What you can learn about

- Conductivity
- Salinity
- Acidity
- Inorganic fertilisers

Main articles		
Large-scale display, digital, RS-232 port	07157-93	1
Cobra4 Display-Connect, Set of transmitter and receiver for using the Cobra4 Mobile- Link with large-scale displays	12623-88	1

Cobra4 Mobile-Link set, incl. rechargeable batteries. SD memory card, USB cable and		
software "measure"	12620-55	1
Cobra4 Sensor-Unit Conductivity, with		
stainless steel electrodes	12633-00	1
Portable Balance, OHAUS JE120	48895-00	1

Cobra4 Display-Connect

Function and Applications

Device combination from a sender and a receiver for the radiobased communication between a Cobra4 Mobile Link and up to 2 digital large displays.

3 Ecology and Environment 3.3 Soil

P1521063 The pH value of various soils (with Cobra4)

Ground profile of luvisol on loess (with three measuring points).

Principle

Demonstration experiment using wireless data communication to send readings to a large-size display. Knowledge of soil characteristics is highly important for agriculture. To familiarise students with this topic, two sub-experiments use pH readings to demonstrate how different soils from different places can be (sub-experiment "Characteristic pH values for soils") and how varied the soil can be down below the surface (sub-experiment "Soil profiles").

Tasks

- 1. Determine the characteristic pH values of various soil samples
- 2. Investigate the soil profile of your area

What you can learn about

- Acidity of soils
- pH value
- substratum
- Soil horizon

Main articles

Cobra4 Mobile-Link set, incl. rechargeable batteries, SD memory card, USB cable and		
software "measure"	12620-55	1
Cobra4 Sensor-Unit pH, BNC connector	12631-00	1
pH-electrode, plastic body, gel, BNC	46265-15	1
Buffer solution tablets pH4, 100	30281-10	1
Buffer solution tablets pH10, 100	30283-10	1

TESS Applied Sciences set examination of soil

Function and Applications

The case includes accessories and reagents to field-test soil on: mineralmatter, body of humus, water/air, soilstructure, acidity, nutrients, soillife.

The 60-page manual describes 19 soil analysis methods and includes an exhaustive theoretical treatise on the following topics:

- basic principles of soil science
- soil as a site factor in forests
- soil fertility factors
- changes in the soil

TESS Biology set chemo-physical water testing

Function and Applications

This kit allows up to 8 work groups to carry out field examinations of running water and lakes.

The following parameters are measured:

- temperature
- oxygen content
- pH-conductivity
- nitrate, nitrite, phosphate and ammonium content
- alkalinity (total hardness)

The examinations can be extended to further parameters when the kit is supplemented with extra equipment, available as accessories and for which room has been reserved in the case:

- depth of transparency (measured using a Secchi disc or a Lux meter with immersion probe)
- water profiles (measurement down to 10 m depth using a water scoop)

The methods are mainly chemico-physical determinations acc. to BACH. They allow an objective assessment of the water quality and are referred to by the Scottish and American Environmental Authorities, as well as those of some German Federal States, in their reports on water quality. The chemico-physical examination methods always give momentary values and so allow measurements of variation over time (daily and seasonal variations) as well as at different positions (e.g.pollution by influents). Added meaning is given by supplementing these methods with biological methods, which aim at the documentation of long-term changes in the condition of the body of water.

Equipment and technical data

The following units are included:

- rapid test for ammonia, pH, nitrate, nitrite, phosphate, oxygen and total hardness
- conductivity tester 0-20 mS/cm, thermometer -10 ... +50 C°
- 500-ml bottles (2x for waste); detailed manual

in the case is also room for:

- Secchi disk (water transparency); water bottles (water profile)
- 2 hand-held instruments according to choice

30837-77

Ecology case, biological water analysis

Function and Applications

Eco-Kit "Biological testing of water quality". The physical, chemical, and bacteriological examination procedures primarily allow an assessment of the momentary water quality. As the variety of species in a body of water decreases with increasing pollution, and the composition of the organism societies thereby changes, the biological determination of the water quality provides additional important indications on the water quality and allows conclusions to be drawn on the previous pollution. The species and frequency of indicator organisms at various degrees of pollution are thereby coupled to the water quality classes I to IV.

Benefits

- This kit enables 6 working groups to simultaneously carry out examinations of running and standing waters in the filed. All important pieces of equipment are present 6-fold.
- The enclosed manual containing tables and sheets for analysis allow assignment to the water quality classes I... IV

Equipment and technical data

- Screens
- Trays
- Dishes, large and small
- Tweezers
- Brushes
- Pipettes
- Magnifier glasses, large and small
- Petri dishes
- Dip net for catching aquatic organisms
- Caliper
- Rulers
- Manual with identification key
- Snap lid jars

Reagent case for water analysis with filter photometer

Function and Applications

This excursion case enables students to actively participate in the measurement of water parameters in your immediate neighbourhood. Rapid chemical analyses provide meaningful results in a very short time. The colourimetric tests can be reproducibly and exactly evaluated by using the portable filter photometer.

Benefits

- Compact water laboratory for mobile use with photometer, reagents and accessories in a new robust case with a premium foamed plastic insert
- increased accuracy and reproducibility by photometric evaluation of colourimetric tests
- economic refill packs with up to 200 determinations per parameter

Equipment and technical data

- Reagent case with Photometer PF-12 incl. manual and 4 batteries with filters for the following wave lengths: 345 / 436 / 470 / 540 / 585 / 620 / 690 nm
- Software for transfering the measured data to a PC
- Manual with test instructions for test kits
- 4 empty tubes; 1 funnel; 1 beaker 25 ml
- 1 syringe 5 ml; 1 syringe 1 ml
- 1 thermometer, 2 titration syringes with dropping tips
- 2 titration test tubes
- The following test kits: Ammonium, iron, nitrate, nitrite, phosphate, pH, carbonate hardness and total hardness

Accessories

- Ni-MH accumulators, Mignon, 1.2 V, 2000 mAh, Eneloop Type, 4 pcs. (07930-03)
- Fast Charging System for up to 4 Ni-MH accumulators, 100...240 V (07930-99)
- Refill packs of the test kits

30839-00

Function and Applications

For investigating air pollution caused by car exhaust gases.

Equipment and technical data

The case contains the following:

- Gas detector pump (100 ml air/stroke)
- Test tube for carbon monoxide
- sulphur dioxide
- 2x carbon dioxide
- ozone, nitrous gases
- benzene and hydrocarbons
- 100-I test bag for exhaust gases with measuring connection, rubber hose and clamp
- Handbook with detailed instructions

TESS Applied Sciences set examination of soil

Function and Applications

The case includes accessories and reagents to field-test soil on: mineral matter, body of humus, water/air, soil structure, acidity, nutrients, soil life.

The 60-page manual describes 19 soil analysis methods and includes an exhaustive theoretical treatise on the following topics:

- basic principles of soil science
- soil as a site factor in forests
- soil fertility factors
- changes in the soil

30836-77

Soil Analysis

Excursion set, soil analysis

Function and Applications

The case contains the complete equipment for the determination of the type of soil, the soil structure, the pH of the soil and its nutrient content, i.e. the nitrogen, phosphate and potassium content available to plants.

Benefits

- The manual contains detailed descriptions of experiments for determining soil characteristics
- It contains a complete schedule for soil testing, from taking samples to differentiating the various soil types, from the determination of the nutrient content to the calculation of the amount of fertiliser required
- It also supplies valuable background information
- All necessary reagents, equipment and accessories are clearly positioned in the case, so that a glance suffices to check that it is complete.

Equipment and technical data

- Extraction Solutions
- Balance
- 2 scoops
- 3 syringes
- Pleated filter
- Colander
- Spray bottle
- 5 containers
- 2 cylinders
- 2 funnels
- Blades
- Spoon

Accessories

- Soil auger (64221-01)
- Soil auger, small (64222-00)

TESS advanced Applied Sciences manual Cobra4 environment and outdoors

Article no. 12622-02

Description

Experimental descriptions from the fields of environment and outdoors that pay particular attention to the advantages of data acquisition with the Cobra4 Mobile-Link. In total more than 15 demonstration and student experiments are described in detail.

Topics

- Learning stations using the experimentation case "Environment and Outdoors"
- We examine our drinking water
- Acidity changes of a watercourse
- Salinity changes of a watercourse
- Water quality heavy metal pollution
- Salinity of soils and plant substrates
- Acidity of soils
- Raised bogs and fens
- Comparison of soil and air temperature during the course of a day
- Weather observation
- Changes of the light conditions in a deciduous forest
- Altitude measurement on a trail
- Measurement of the height of a tower
- Terrain mapping
- Air pressure and relative humidity in a plane
- We visit a wastewater treatment plant

Equipment and technical data

DIN A4 stapled, colour, 80 pages

This documentation contains the following experiments:

Water quality - contamination with heavy metals **P0990162**

We examine our drinking water **P1520062**

Altitude measurement on a trail **P1520262**

Measuring the height of a tower **P1520362**

Weather observation with the Cobra4 Mobile-Link
P1520462
Terrain mapping
P1520662
Changes of the light conditions in a deciduous forest
P1520762
Acidity changes of a watercourse
P1520862
Comparison of soil and air temperatures in the course of a day
P1520962

The pH value of various soils **P1521062**

Complete experiment list see www.phywe.com

P4100360 - Insulating effect of body coverage - page 41

P1521063 - The pH value of various soils - 44

Behavioural Biology

4.1 Behavioural Science

48

4 Behavioural Biology

4.1 Behavioural Science

P4080300 Learning performance of humans

Maze.

Principle

The blindfolded test subject has to find the way to the finish with a felt-tip pen in the slits of a finger labyrinth. Success and error are checked by placing a sheet of paper underneath. If a person has to find his way through a labyrinth, he will first of all attempt to obtain an overall view of the labyrinth. If, however, an overview of the labyrinth is prohibited, the test subject is obliged to find his way by trial and error. In the first attempt incorrect paths are frequently selected and the time taken to cross is relatively long. In subsequent practice crossings the number of errors as well as the time required are reduced steadily, until the values settle at a particular level.

Task

The learning curves for two different test objectives are drawn: to cross the maze with the least number of errors and as quickly as possible.

What you can learn about

- Finger labyrinth
- Learning behaviour
- Learning curve
- Short term memory
- Medium term memory

Main articles

Stop watch, interruption type	03076-01	1
Finger labyrinth	65990-00	1

Measuring reading skills with Cobra4

P1522260

Typical measurement result of a trained reader while reading an easy text.

Principle

With this experiment, you can determine your own personal reading speed. One's reading speed can be trained and is an important prerequisite for the proper handling of all kinds of texts. You can precisely study the movement of your eyes during the measurement.

Task

Explore your reading behaviour reading easy and difficults texts.

What you can learn about

- Reading speed
- Movement of eyes
- Typoglycemia

Main articles

Software Cobra4 - multi-user licence	14550-61	1
Cobra4 Sensor-Unit Electrophysiology: ECG, EMG, EOG	12673-00	1
Cobra4 Wireless-Link	12601-00	1
Cobra4 Wireless Manager	12600-00	1
Shielded leads for electrophysiology, color-		
coded, 3/pkg	12673-01	1
Electrodes for ECG Sensor, 100 pcs.	12559-01	1

Cobra4 Sensor-Unit Electrophysiology: ECG, EMG, E0G

Function and Applications

To perform electrophysiological, noninvasive, measurements of heart, eye and muscle activities.

Benefits

- The measurement electrodes are connected to 3,5-mm jacks using three separate and shielded measurement cords.
- The sensor can be connected to a PC wirelesslink or to a USBport.
- Requires measurement cords and ECG and/or EMG/EOG electrodes.

4 Behavioural Biology

4.1 Behavioural Science

Learned behaviour in fish

P1056600

Principle

Fish are able to learn that certain colours are connected to food. A fish is fed as follows: Choose one plate (e.g. the red one) and clamp a living worm (Tubifex spec.) to the plate. Offer all of the tree plates to the fish. It is going to detect the worm and eat it. Change the positions of the plates so that only the colour leads to the worm. After a few days the fish is going to swim to the red plate immediately after entering the aquarium.

For more details refer to www.phywe.com

Agonistic behaviour in male fighting fish

P0938300

P0938400

Principle

Betta males defend their territories strongly. Penetrates a conspecific the territory, the area owner reacts first with posturing. The intruder responds with escape, display or fighting behavior. This is done by a rigidly fixed innate ritual. This experiment analyses the behaviour using a mirror. The frequency of the various behavioral characteristics (behavior sequence) is determined.

For more details refer to www.phywe.com

Shooling behaviour in fish

For more details refer to www.phywe.com

Principle

Living in a swarm is advantageous for fish as predators are confused by a swarm of fish (much like a goalie, who is confronted with a lot of balls at the same time).

The swarm behavior is shown in this experiment by the fact that the individual fish clearly prefer the side of the aquarium in which the swarm is staying. Knocking on the glass of the aquarium the parallel orientation of the fish to each other becomes evident.

PHYWE excellence in science

Plant Physiology / Botany

5.1	Photosynthesis	52
5.2	Water Balance	55
5.3	Mineral Balance	56
5.4	Growth and Development	59
5.5	Literature	62

5 Plant Physiology / Botany

5.1 Photosynthesis

P4110160 Photosynthesis (bubble counting method) with Cobra4

Number of bubbles/min as a function of Light intensity ((/Ix)

Principle

To measure the dependence of photosynthesis on light.

Tasks

- 1. To measure the dependence of photosynthesis on light by counting the oxygen bubbles given off by an aquatic plant.
- 2. To investigate the influence of the carbon dioxide content of the water on the rate of photosynthesis.

What you can learn about

- Dependence of photosynthesis on light and carbon dioxide content
- Oxygen bubble counting
- Lux measurement

Main articles

Software Cobra4 - multi-user licence 14550-61	L
Cobra4 Sensor-Unit Weather: Humidity, Air pressure,Temperature, Light intensity,	
Altitude 12670-00	L
Cobra4 USB-Link 12610-00	L
Ceramic lamp socket E27 with reflector, switch, safety plug 06751-01	L

Cobra4 Sensor-Unit Weather

Function and Applications

Depending on application type, the Cobra4 Sensor-Unit Weather can be connected to the Cobra4 Wireless-Link, the Cobra4 Mobile-Link, the Cobra4 USB-Link oder the Cobra4 Junior-Link using a secure and reliable plug-in/ lockable connection.

Benefits

- At the same time, the following measuring parameters may be recorded: airpressure, relative humidity, airtemperature, brightness, height
- Ideal for use in outdoor experiments, on classtrips or for project or school hikingdays.

Photosynthesis (measurement of oxygen pressure) with Cobra4

P4110260

Oxygen pressure (hPa) as function of time (S) with white light.

Principle

To compare the increase in oxygen pressure during photosynthesis.

Tasks

- 1. To compare the increase in oxygen pressure during photosynthesis in white light, green light and in the dark.
- 2. To discuss the reasons for the differences of the pressure curve rise.

What you can learn about

- Photosynthesis
- Intensity and colour of the light
- Pressure measurement

Main articles

Software Cobra4 - multi-user licence	14550-61	1
Cobra4 Sensor-Unit Thermodynamics, pressure abs. 2 bar and 2 temperature NiCr-		
Ni	12638-00	1
Cobra4 USB-Link	12610-00	1
Ceramic lamp socket E27 with reflector,		
switch, safety plug	06751-01	1

Related Experiment

The twenty-four-hour rhythm of an aquatic plant

P4100840

Cobra4 Sensor-Unit Thermodynamics, pressure abs. 2 bar and 2 temperature NiCr-Ni

Function and Applications

The Cobra4 Sensor-Unit Thermodynamics is a measuring recorder for pressure and temperature measurements, which is controlled by micro-controller.

Benefits

- It can be fitted with two NiCr-Ni thermoelements (type K), in order to measure up to two temperatures and one absolut pressure value simultaneously
- The unit can be connected to the Cobra4 Wireless-Link, the Cobra4 Mobile-Link or the Cobra4 USB-Link using a secure and reliable plug-in/ lockable connection.

5 Plant Physiology / Botany

5.1 Photosynthesis

P4110660 The importance of Carbon dioxide for Photosynthesis

Decrease of CO2 concentration during illumination.

Principle

This experiment shows that carbon dioxide is consumed during photosynthesis, whereas it is produced through cellular respiration.

Tasks

- 1. Determine the CO2-consumption during photosynthesis
- 2. Determine the CO2-production during cellular respiration

What you can learn about

- Photosynthesis
- Cellular respiration
- Oxygen
- Carbon dioxide

Main articles		
Software Cobra4 - multi-user licence	14550-61	1
Cobra4 Sensor-Unit CO2	12671-00	1
Cobra4 Wireless-Link	12601-00	1
Ceramic lamp socket E27 with reflector,		
switch, safety plug	06751-01	1
Cobra4 Wireless Manager	12600-00	1

Related Experiment

Paper chromatography of chloroplast pigments

P0892300

Cobra4 Sensor-Unit CO2

Function and Applications

Sensor of the Cobra4 family for the measurement of the CO₂ concentration in the air. The measured data of the sensor can be transferred with the Cobra4 Wireless Link by radio to the PC in connection with the Cobra4 Wireless Manager. All Cobra4 Sensor Units are quickly connectable through a secure and reliable plugin / lockable connection.

Equipment and technical data

- measuring range: 0... 6000 ppm
- resolution: 50 ppm; data transfer rate: 1 Hz
- dimensions (L x W x H): 60 mm x 70 mm x 30 mm
- weight: 60 g

Transpiration of leaves with Cobra4

P4110360

Measurement result (Experiment 1) - Plant transpiration in still air.

Principle

Plants "sweat" just as people do and are thereby physiologically and morphologically suited to their specific environment. They transpire at high temperatures and pass water to the environment. Transpiration also serves for the transport of water and nutrients. The underpressure that is caused by transpiration draws water up from the roots, substances are transported further.

Tasks

- 1. To prepare and analyse diagrams to illustrate the transpiration of plants, depending on different environmental conditions.
- 2. To discuss the reasons of the differences of the pressure curve decrease.

What you can learn about

- Transpiration
- Water and nutrients transport
- Influence of wind
- Temperature
- Humidity and type of leaves

Main articles

Software Cobra4 - multi-user licence	14550-61	1
Cobra4 Sensor-Unit Thermodynamics, pressure abs. 2 bar and 2 temperature NiCr-	42620.00	
Ni	12638-00	1
Cobra4 USB-Link	12610-00	1
Hot/cold air blower, 1800 W	04030-93	1
Bunsen burner /DIN/, nat.gas	32165-05	1

Cobra4 Sensor-Unit Thermodynamics, pressure abs. 2 bar and 2 temperature NiCr-Ni

Function and Applications

The Cobra4 Sensor-Unit Thermodynamics is a measuring recorder for pressure and temperature measurements, which is controlled by micro-controller.

Benefits

It can be fitted with two NiCr-Ni thermoelements (type K), in order to measure up to two temperatures and one absolut pressure value simultaneously

12638-00

PHYWE Systeme GmbH & Co. KG • www.phywe.com

P1135700 Osmosis - dependence of the osmotic pressure on the concentration

Levels of different solutions during experiment.

Principle

Osmosis describes the phenomenon that solvent molecules move through a partially permeable membrane into a region of higher solute concentration. Thus, the concentration of solute is equalized on both sides. The experimental set-up consists of seven chambers that are filled with solutions of sugar with different concentrations. The liquid column in the capillaries is determined and the dependence of the osmotic pressure on the concentration can easily be shown.

Tasks

- 1. Investigate the phenomenom of osmosis in a simple medel experiment
- 2. Determine the dependence of osmotic pressure on concentration of dissolved molecules

What you can learn about

- Osmosis
- Osmotic pressure
- Concentration

Main articles

Set of Precision Balance Sartorius CPA 623S and measure software, 230 V	49224-88	1
Osmosis and electrochemistry chamber	35821-00	1
Suppl.chamber f.osmosis/el.chem.	35821-10	5
Filtration stand for 2 funnels	33401-88	1
Scale 350 mm	64840-00	7

Cobra4 Experiment - available 2013

Ionic permeability of the cell membrane with Cobra4

P4120260

Jacobus Henricus van 't Hoff 1901, Nobel Prize in Chemistry

Salinity of soils and plant substrates with Cobra4

P1521163

Setup for an additional experiment.

Principle

Demonstration experiment using wireless data communication to send readings to a large-size display. How suitable are certain soils and plant substrates in terms of plant nutrition? This experiment is concerned with the measurement of conductivity, which gives an indication of which of the studied soils and plant substrates already contain nutrient salts necessary for the growth of plants and which ones would be better if nutrients were added in the form of fertiliser. Plants gain their nutrition in the form of salt ions from the soil. The most important of the 16 nutrients which plants need to grow are nitrogen in the form of nitrates and ammonia, phosphorus in the form of phosphates and potassium in the form of potassium salts. In addition, soils need to have lime (calcium carbonate) to reduce their acidity (reduction in pH). For agricultural purposes, such nutrients are added to the soil in the form of inorganic fertilisers. For house plants, fertiliser-enriched potting soil is used.

Task

Measure the conductivity of the samples in the supernatant and note the values.

What you can learn about

- Conductivity
- Salinity
- Acidity
- Inorganic fertilisers

Main articles		
Large-scale display, digital, RS-232 port	07157-93	1
Cobra4 Display-Connect, Set of transmitter and receiver for using the Cobra4 Mobile- Link with large-scale displays	12623-88	1

Cobra4 Mobile-Link set, incl. rechargeable		
batteries, SD memory card, USB cable and		
software "measure"	12620-55	1
Cobra4 Sensor-Unit Conductivity, with		
stainless steel electrodes	12633-00	1

Large-scale display, digital, RS-232 port

Function and Applications

Special four-digit large-format display for presenting the measurement data supplied by the new Cobra4 Mobile-Link with Cobra4 Display-Connect, the Cobra3 Com-Unit, the PHYWE hand-held measuring instruments and Sartorius or Scaltec balances equipped with data interfaces.

5 Plant Physiology / Botany

5.3 Mineral Balance

Spectroscopic identification of sodium, potassium, and calcium in plant ashes

P0898200

Principle

The content of plant ash is investigated to investigate the mineral content of plants. The characteristic lines of the elements are determined using a small spectroscope. The cations of sodium, potassium and calcium are detected qualitatively.

For more details refer to www.phywe.com

Absorption of minerals by plants

P1034700

Principle

This experiment offers the opportunity to treat the flame coloration as a test method once more. If desired, cobalt glasses can be used for demonstrating the violet coloration due to potassium ions and sodium ions also in the case of the non-fertilized plant in order to show that mineral matters are even contained in drinking water/ground water and that these mineral matters are absorbed by the plants, too.

For more details refer to www.phywe.com

The effect of gravity and centrifugal force on plants

P4050200

Principle

The main shoot of a plant generally follows a perpendicular direction away from the centre of gravity of the earth (negative geotropism), whereas the main root grows towards the centre of gravity (positive geotropism). If however the plant is placed on a rotating horizontal disk, this will alter the direction of growth of the shoot and of the root.

Tasks

- 1. Measure the alignment of shoots and roots under the effect of centrifugal forces which are less than, equal to or greater than gravity
- 2. Raise sunflower seedlings in small beakers in a rotating drum
- 3. Set different centrifugal forces by changing the speed of rotation of the drum motor.

What you can learn about

- Geotroprism
- Positive geotropism of roots
- Negative geotropism of shoots
- Centrifugal force
- Rotational speed
- Statoliths

Main articles

Strobe drum	65976-00	1
Power supply 012 V DC/ 6 V, 12 V AC, 230 V	13505-93	1
Motor with disk holder	11614-00	1
Support base variable	02001-00	1

Strobe drum

Function and Applications

To produce moving stimuli for the investigation of the resolving power of the eye, for testing human reaction capacity and as a type of centrifuge for investigating the effects of mass acceleration on plants and animals.

Equipment and technical data

- Diameter: 32 cm
- Circumference: 100 cm
- Height: 20 cm
- Pattern: 180 black stripes
- · With drive belt

5 Plant Physiology / Botany

5.4 Growth and Development

P4110460 Glycolysis (pressure measurement) with Cobra4

Measurement of carbon dioxide pressure versus time result at room temperature.

Principle

The aim of this experiment is to prove glycolysis by means of measuring the CO2 production under various experimental conditions (temperature, pH).

Tasks

- 1. To identify glycolysis by measuring the production of CO2 and plotting graphs.
- 2. To investigate the influence of temperature and pH on metabolic activity.

What you can learn about

- Glycolysis
- Yeast fermentation of sugar
- CO₂ pressure measurement
- Influence of temperature and pH

Main articles

Software Cobra4 - multi-user licence	14550-61	1
Cobra4 Sensor-Unit Thermodynamics, pressure abs. 2 bar and 2 temperature NiCr-		
Ni	12638-00	1
Cobra4 Wireless-Link	12601-00	1
Cobra4 Wireless Manager	12600-00	1
Magnetic stirrer Mini / MST	47334-93	1
Holder for Cobra4 with support rod	12680-00	1
Support base variable	02001-00	1

Software Cobra4 - multi-user licence

Function and Applications

The "measure Cobra4" measuring software leaves nothing to be desired.

As soon as a Cobra4 sensor is connected to a PC, irrespective of whether by Cobra4 Wireless or Cobra4 USB, the "measureCobra4" software opens completely automatically and shows the connected sensors, the required measuring windows and the current measuring data.

Measurement recording is then started with a single CLICK. This all takes under 40 seconds!

Glycolysis (temperature measurement) with Cobra4

P4110560

Measurement of temperature versus time during fermentation.

Principle

Investigating the temperature increase during the fermentation of sugar by yeast cells. This experiment enables a discussion to be carried out on metabolic processes and phenomena such as glycolysis, fermentation, aerobic vs. anaerobic respiration, the Pasteur effect.

Tasks

- 1. To depict the increase in temperature, which results, when yeast cells ferment sugar.
- 2. To compare the temperature curves of the solutions with and without yeast.

What you can learn about

- Glycolysis
- Yeast fermentation of sugar
- Temperature measurement
- Respiration energy

Main articles

Precision Balance, Sartorius TE 212, 210 g /	48833-93	1
Software Cobra4 - multi-user licence	14550-61	1
Cobra4 Sensor-Unit Thermodynamics, pressure abs. 2 bar and 2 temperature NiCr-		
Ni	12638-00	1
Cobra4 Wireless-Link	12601-00	1
Cobra4 Wireless Manager	12600-00	1
Immersion probe NiCr-Ni, steel, -50400 °C	13615-03	2
Thermos flask	64841-00	2

Immersion probe NiCr-Ni, steel, -50...400 °C

Function and Applications

NiCr-Ni thermocouples with 2 pin standard flat plug Type K, free of thermal tension.

Benefits

• Suitable for e.g. Digital Thermometer Hand-held measuring device Temperature or interfaces.

Equipment and technical data

- Temperature range: 50 ... + 400°C
- Response time: approx. 5 s
- Length of lead: 100 cm, Diameter: 3 mm
- Length: 120 mm

5 Plant Physiology / Botany 5.5 Literature

Demo advanced Biology Manual Cobra4 Biochemistry & plant physiology

Article no. 01331-02

Description

Experimental descriptions from the fields of biochemistry and plant physiology that pay particular attention to the advantages of data acquisition with the Cobra4 System. In total more 10 demonstration experiments are described in detail.

Topics

- Photosynthesis (2 different methods)
- Transpiration of leaves
- Glycolysis (2 different methods)
- The ionic permeability of the cell membrane
- Determination of the Michaelis constant
- Enzyme inhibition
- Substrate inhibition of enzymes
- The enzymatic activity of catalase

Equipment and technical data

Din A4 stapled; in colour, 56 pages

This documentation contains the following experiments:

Transpiration of leaves

P1351260

Photosynthesis (02 pressure measurement) (with Cobra4) **P1351360**

Glycolysis (temperature measurement) **P1351460**

The enzymatic activity of catalase **P1360760**

Photosynthesis (bubble-counting-method) **P1360860**

Glycolysis (pressure measurement) **P1360960**

Ionic permeability of the cell membrane **P1369760**

Determination of the Michaelis constant **P1369860**

Complete experiments see www.phywe.com

01331-02

P4110160 - Photosynthesis (bubble counting method) (with Cobra4) - page 54

P4110460 - Glycolysis (pressure measurement) - page 62

P1521163 - Salinity of soils and plant substrates - page 59

E excellence in science

Animal Physiology

6.1 Animal Physiology

64

6 Animal Physiology 6.1 Animal Physiology

P4010111 Recording of nerve and muscle potentials by mechanical stimulation at the rear end of an earthworm with Cobra3

Result with weak stimulation.

Principle

Earthworms have a median giant nerve fibre, which reacts to stimulation at the front end, and two lateral giant fibres, which can be stimulated at the rear end. The experiment covers the following topics: the course of a biphasic action potential over time, estimation of the conduction velocity and coding of the stimulant intensity as frequency modulation

Tasks

- 1. stimulate the earth worm with weak, moderate and strong stimulation.
- 2. observe the course of the biphasic action potential over time
- 3. estimate the conduction velocity

What you can learn about

- Nerve and muscle potentials
- Mechanical stimulation
- Biphasic action potential
- Frequency modulation
- Median and lateral giant nerve fibres
- Conduction velocity

Main articles

Cobra3 BASIC-UNIT, USB	12150-50	1
Biological amplifier	65961-93	1
Earthworm experiment chamber	65981-20	1
Stimulus bristle, triggering	65981-21	1
Power supply 12V / 2A	12151-99	1
Software Cobra3 Universal recorder	14504-61	1

Cobra4 Experiment - available 2013

Recording of nerve and muscle potentials by mechanical stimulation at the rear end of an earthworm with Cobra4

P4010160

Related Experiment

Recording of nerve and muscle potentials by mechanical stimulation at the front end of an earthworm with Cobra3

P4010211

Biological amplifier

Function and Applications

With the aid of this biological amplifier a wide range of electrophysiological experiments can be carried out on human beings, insects and earthworms.

Recording of nerve potentials after the electrical stimulation of P4010311 an anaesthetised earthworm with Cobra3

Result with a weak stimulus.

Principle and tasks

To work on the following themes by measuring nerve and muscle potentials:

- The action of an anaesthetic
- The different conduction velocities of median and lateral giant fibres
- Refractory period of the median giant fibre

What you can learn about

- Nerve and muscle potentials
- Electrical stimulation
- Anaesthetization of muscles
- Electrical resistance of nerve fibres
- Double pulse stimulation
- Refractory period

Main articles Cobra3 BASIC-UNIT, USB 12150-50 1 **Biological amplifier** 65961-93 1 Stimuli generator 65962-93 1 Earthworm experiment chamber 65981-20 1 Power supply 12V / 2A 12151-99 1 Software Cobra3 Universal recorder 14504-61 1

Cobra4 Experiment - available 2013

Model experiment illustrating the development of resting potential with Cobra4

P4010462

Function and Applications

The earthworm experiment chamber is used for non-harming neurophysiological experiments on earthworms. The worm is placed in a channel which can be closed by an acrylic glass cover, which has holes in it for inserting a bristle etc. The channel in which the worm lies has along row of 23 pin electrodes which can be connected to the biological amplifier by means of special cables. The experimental data is displayed either on a computer screen or by a storage oscilloscope. The experiment does not harm the earthworm in any way. Much information can be obtained by using the worm as it is and irritating it with a softbristle. Some phenomena can only be measured, or at least be better measured, however, using electrical stimulation (requires a stimuli generator). For this it is necessary to anaesthetise the worm for a short time.

Equipment and technical data

Dimensions (cm) 32×6×4

6 Animal Physiology

6.1 Animal Physiology

P4060200 Preferential temperature in insects

Insects.

Principle

The temperature requirements of animals with regard to their environment differ widely: they vary from temperatures just below 0°C for arctic and antarctic animals to temperatures of around 50°C for desert animals and animals from hot springs. Within these limits many species prefer one range: the preferential temperature. Using their thermoreceptors the animals recognize the temperature which suits them, gather in an area at the corresponding temperature.

Tasks

- 1. Test the temperature demands of poikilothermic animals
- 2. Produce a temperature gradient between approximately 45°C and 10°C using a ring shaped temperature organ
- 3. Record the positions of the individual animals.

What you can learn about

- Temperature optimum
- Poikilothermic animals
- Thermotaxis
- Phototaxis
- Thigmotaxis
- Torpor
- Environmental requirements
- Geographical seperation

Main articles

Temperature organ 6598	3-93 1	1
Immersion thermostat Alpha A, 230 V 0849	3-93 1	1
Bath for thermostat, Makrolon 0848	7-02 1	1

Temperature organ

Function and Applications

This ring-shaped apparatus enables a temperature gradient to be formed and is a valuable tool for working out ecological relationships.

Benefits

- It allows, e.g., to observe the influence of the temperature of soil on germination and growth of plants
- Soil organisms placed in the temperature organ can move freely and migrate the region they prefer so that their temperature and/or moisture preferences can be studied

Equipment and technical data

- Temperature gradient 10 to 45°C
- Built-in electric heater and through-flow cooling
- 12 radial holes to insert thermometers
- Transparent cover plate with 12 sections

Humidity preferendum of soil arthropods

P0911700

Principle

Heat radiated by a lamp gradually causes soil to dry out. That and the light emitted cause any creatures in a sample to burrow to the bottom where they are sieved into a funnel and collected inside a vessel. The vessel contains moist filter paper in order to capture the creatures alive or otherwise contains a fixing solution. The creatures obtained from the soil in this way can be studied under a normal or a stereo microscope and thus identified.

Tasks

- 1. Determine the humidity of your soil sample.
- 2. Investigate which creatures live in the soil samples.

What you can learn about

- Berlese apparatus
- Woodlouse
- Earwig
- Springtail
- Humidity preferendum

Main articles

Humidity determination apparatus in transport box64203-02	1
Balance OHAUS LG 311, 4 beams, 0311 g 44007-31	1
Stereo microscope ST-30-2L0,2x/4x 62459-93	1
Berlese apparatus 64204-88	1

Humidity determination apparatus in transport box

Function and Applications

To determine the moisture content of the soil. This method can be implemented particularly in ecological pilot projects, which it provides fast and reliable results.

Equipment and technical data

- CM pressure cylinder
- manometer, sealings
- precision spring balance
- testing medium for the manometer
- metal grinding bowl
- 4 stainless steel bullets in plastic can
- 20 calciumcarbide phials in plastic can

6 Animal Physiology

6.1 Animal Physiology

P4070100 Optomotor response in insects

Fastening the fly in place.

Principle

Behavioural physiological measurement of the time resolving capacity of the compound eye of flies (without electrophysiological leads). Many insects try to follow movements in their surroundings not only with their head but with their whole body. If a striped strobe pattern passes from left to right in front of the head the insect makes a right turn. This optomotor response can be used to determine the speeds at which the insect can still perceive the strobe pattern. The movements (optomotor response) indicate whether or not the fly can resolve the strobe pattern with the drum set at a constant speed.

Task

To determine the ratio of right and left turns made by a fly attached to the centre of a strobe drum.

What you can learn about

- Optomotor response; Time resolving capability
- Compound eye; Strobe drum
- Pattern frequency
- · Left- and right-hand movements of flies

The use of *Calliphora Spec* is recommended.

Main articles

Strobe drum	65976-00	1
Power supply 012 V DC/ 6 V, 12 V AC, 230 V	13505-93	1
Motor with disk holder	11614-00	1
Fine control valve	33499-00	1
Compressed gas,C02,21 g	41772-06	1
Caterpillar breeding box 200x280	64564-00	1

Power supply 0-12 V DC/ 6 V, 12 V AC, 230 V

Function and Applications

High quality power supply specially suitable for student experiments in electricity and electronics as well as for demonstration.

Equipment and technical data

- Stabilised
- Shortcircuit proof
- Output voltage: 1...12 V DC, 6 V / 12 V AC
- Rated current: DC 0...2 A / AC 5 A
- Ripple: max 1 mV
- Resistance: 1 m0hm
- Mains voltage: 230 V
- Housing dimensions: 194 x 140 x 130 mm

Volumetric measurement of breathing in small animals

P4090100

Respirometer

Principle

The measurement of breathing processes, i.e. determination of the consumption of oxygen or release of carbon dioxide is carried volumetrically. Therefore, an animal is enclosed in a temperaturecontrolled spirometer. The exhaled carbon dioxide is absorbed by concentrated potassium hydroxide solution.

Task

Measure the oxygen consumption of insects in relation to ambient temperature and body weight.

What you can learn about

- Oxygen consumption
- Volumetric measurement
- Respirometer
- Carbon dioxide consumption
- Compensation vessel
- Q₁₀ value

Main articles

Immersion thermostat Alpha A, 230 V	08493-93	1
Respirometer, complete assembly	65998-00	1
Bath for thermostat, Makrolon	08487-02	1
Support base variable	02001-00	1
Pipettor	36592-00	1
Glass beads, d 6 mm, 850 pcs.	36756-25	1

Respirometer, complete assembly

Function and Applications

Respirometer, complete assembly of 2 containers and a U-shaped manometer in between, troughs for potassium hydroxide, volumetric measurement of breathing processes, compensation of air pressure fluctuations.

Equipment and technical data

- Measuring bottle for object
- Vascular compensation to compensate for atmospheric pressure fluctuations
- Manometer
6 Animal Physiology

6.1 Animal Physiology

P5950400 Ultrasonic investigation with eye dummy

Measured Reflexes with the ultra echo software.

Principle

This experiment shows a typical application of A-scan ultrasound biometry in medical diagnostics for ophthalmology. On the eye dummy the different parts of an eye can be identified and the time of flight is measured in each part so that the different dimensions in the eye structure can be determined.

Tasks

- 1. Measure the different parts of the eye, determine the time of flight and depth of the structures (lens, iris, retina).
- 2. Compare the dimensions measured on each separate part with those obtained using average velocity for the whole eye.

What you can learn about

- Cornea and retina distance
- Lens thickness
- Biometry
- Eye sonography
- Mean ultrasound velocity
- Time of flight
- A-mode

Main articles

Basic Set Ultrasonic echoscope	13921-99	1
Extension set: medical ultrasonic diagnostics	13921-04	1

Basic Set Ultrasonic echoscope

Function and Applications

With the ultrasonic echoscope the basics of ultrasound and its wave characteristics can be demonstrated. Terms like amplitude, frequency, sound velocity or Time Gain Control TGC will be explained.

The cylinder set can be used to vividly demonstrate reflection as well as sound velocity and frequency depending on attenuation in solid state materials.

The knowledge e.g. regarding sound velocity will be used to measure the test block.

The principles of image formation from A-scan to B-scan can be explained. With the different probes the frequency depending resolution can be evaluated.

79
81
83
86
88
90

7.1 Heart and Circulatory System

P4020160 Human electrocardiography (ECG) with Cobra4

Electrocardiogram during measurement.

Principle

A typical human electrocardiogram is recorded. The resulting diagram shows all the expected elements that can be expected in an electrocardiogram: P wave, PR segment, Q wave, R wave, QRS complex, S wave, ST segment, and T wave of a normal sinus rhythm for the human heart.

Tasks

- 1. Record an electrocardiogram (ECG) between the left leg and the right and left arm (lead II according to Einthoven).
- 2. Relate the ECG segments to the course of heart contraction (P wave, P-Q segment, QRS complex, T wave).

What you can learn about

- Electrocardiogram according to Einthoven
- Heart rate
- Quiet and strained heart
- ECG segments
- Atria
- Ventricles
- AV nodes

Main articles

Software Cobra4 - multi-user licence	14550-61	1
Cobra4 Sensor-Unit Electrophysiology: ECG,		
EMG, EOG	12673-00	1
Cobra4 USB-Link	12610-00	1
ECG electrodes, 3/pkg	65981-01	1
Shielded leads for electrophysiology, color-		
coded, 3/pkg	12673-01	1

Willem Einthoven 1924, Nobel Prize in Medicine

Blood pressure measurement with Cobra4

P4020360

Typical result: The graph shows the three stages of the measurement.

Principle

Didactical blood pressure measurement system for wireless data transfer of measurement data from test person to computer, thereby permitting flexible and mobile experimental setup.

Tasks

To prepare a plot of blood pressure measurement and to read the values of systolic and diastolic blood pressure.

What you can learn about

- Systolic blood pressure
- Diastolic blood pressure
- Measuring cuff
- Blood pulse waves

Main articles

Software Cobra4 - multi-user licence	14550-61	1
Cobra4 Sensor-Unit Thermodynamics, pressure abs. 2 bar and 2 temperature NiCr-		
Ni	12638-00	1

Cobra4 USB-Link	12610-00	1
Blood pressure measuring unit	64234-00	1

Cobra4 Sensor-Unit Thermodynamics, pressure abs. 2 bar and 2 temperature NiCr-Ni

Function and Applications

The Cobra4 Sensor-Unit Thermodynamics is a measuring recorder for pressure and temperature measurements, which is controlled by micro-controller.

Benefits

- It can be fitted with two NiCr-Ni thermoelements (type K), in order to measure up to two temperatures and one absolut pressure value simultaneously
- The unit can be connected to the Cobra4 Wireless-Link, the Cobra4 Mobile-Link or the Cobra4 USB-Link using a secure and reliable plug-in/ lockable connection.

7.1 Heart and Circulatory System

P4020460 Changes in the blood flow during smoking with Cobra4

Change in the skin temperature during smoking.

Principle

Cigarette consumption influences the diameter and therefore the circulation of the peripheral blood vessels. This experiment studies the change of the finger temperature during smoking.

Task

How the temperature curve differs should be discussed with reference to the tested persons' regular smoking habits.

What you can learn about

- Skin temperature
- Heavy and moderate smokers
- Occasional smokers
- Non-smokers

Main articles

Software Cobra4 - multi-user licence	14550-61	1
Cobra4 USB-Link	12610-00	1
Cobra4 Sensor-Unit Temperature.		_
semiconductor -20110 °C	12640-00	1

Cobra4 Sensor-Unit Temperature

Funktion and Applications

Cobra4 -20..110°C Sensor-Unit Temperature-semiconductor **Benefits**

 can be connected directly to the Cobra4 Wireless-Link, the Cobra4 Mobile-Link or the Cobra4 USB-Link.

Equipment and technical data

- Sensor jacket: stainless steel
- Measuring range: -20..+110°C
- Absolute accuracy: ± 0.5°C
- Resolution: 0.05°C; Time constant: 7 s
- Data flow rate: 200 Hz, Connecting port: sub-D-15-pole
- Sensor length / diameter: 200 mm, 6 mm
- Cable length: 120 cm; Weight: 125 g

Doppler sonography

P5950100

Typical spectral window pump mode 4 measured with PHYWE measure Ultra Flow software.

Principle

This set-up shows how blood flow studies are performed using Doppler ultrasound (Doppler sonograph). On a realistic arm dummy, the differences between continuous (venous) and pulsating (arterial) flow are shown as well as the difference in flow through a normal blood vessel and a stenosis.

Tasks

- 1. Analyse blood flow and search positive and negative flow components. Explain the differences
- 2. Locate the built-in stenosis and compare the spectral distribution upstream and downstream of the stenosis
- 3. Examine and compare the three pulse modes of the pump.

What you can learn about

- Venous Flow
- Arterial flow
- Stenosis
- Blood flow velocity tracings
- Frequency shift
- Doppler effect
- Doppler angle
- Doppler sonography
 Colour Doppler
- Colour DopplerContinuity equation
- continuity equation

Main articles

Basic set: Ultrasonic Doppler technique	13923-99	1
Extension Set: medical Doppler Sonography	13923-02	1

Basic set: Ultrasonic Doppler technique

Function and Applications

Kit containing instrument and accessories for general ultrasonic sonography experiments. The software displays the measured data from the ultrasonic doppler apparatus, basic instrument of this kit, in realtime on the computer screen. Modular and extendable with accessory kits for experimentations in the fields of hydraulics and medical diagnostics.

Benefits

- This kit forms a very didactic experimentation system beginning from the basics of sonography and can with accessory kits be extended for the use in specific applications as hydraulics and medical diagnostics (only for training purposes!)
- an experimentation manual is included

7 Human Physiology 7.1 Heart and Circulatory System

P1522160 We investigate our physical fitness - the heart under stress with Cobra4

ECG under strain from 20 squats.

Principle

An electrocardiogram (ECG) can record the sum of the electrical activities of all of the heart muscle fibres. Under stress, cardiac activity increases in order to maintain the stability of the cardiovascular system. The heart contraction cannot be controlled at will. This experiment enables you to study how physical stress affects the respective activity of your heart.

Tasks

- 1. Record an ECG while switching from rest to strain (20 squats)
- 2. Record an ECG while switching from strain to rest and calculate the time that elapses until the resting heart rate is reached again

What you can learn about

- Electrocardiogram (ECG)
- Cardiac activity
- Heart muscle

Main articles

Software Cobra4 - multi-user licence	14550-61	1
Cobra4 Sensor-Unit Electrophysiology: ECG,		
EMG, EOG	12673-00	1
Cobra4 Wireless-Link	12601-00	1
Cobra4 Wireless Manager	12600-00	1
Shielded leads for electrophysiology, color-		
coded, 3/pkg	12673-01	1
Electrodes for ECG Sensor, 100 pcs.	12559-01	1

Cobra4 Sensor-Unit Electrophysiology: ECG, EMG, EOG

Function and Applications

To perform electrophysiological, noninvasive, measurements of heart, eye and muscle activities.

Benefits

- The measurement electrodes are connected to 3,5-mm jacks using three separate and shielded measurement cords.
- The sensor can be connected to a PC wireless link or to a USBport.
- Requires measurement cords and ECG and/or EMG/EOG electrodes.

Phonocardiography: Cardiac and vascular sonic measurement (PCG) with Cobra3

P4020211

Typical vascular phonometric measurement.

Principle

With Phonocardiography the sounds of the heart are graphically represented. Cardiac and vascular measurements are recorded at different locations of the circulatory systems.

Tasks

- 1. Cardiac and vascular sonic measurement at different locations of the circulatory system
- 2. Measurement of the pulse rate at different levels of athletic loading.

What you can learn about

- Pulse; Throat and chest sonic measurement
- Quiet and strained heart; Contracting tune
- Systole; Flapping sound; Diastole

Main articles		
Cobra3 BASIC-UNIT, USB	12150-50	1
Acoustic probe for COBRA3	03544-00	1
Power supply 12V / 2A	12151-99	1
Software Cobra3 Universal recorder	14504-61	1

Cobra4 Experiment - available 2013

Phonocardiography: Cardiac and vascular sonic measurement (PCG) with Cobra4

P4020260

Power supply 12V / 2A

Function and Applications

Small switching power supply with safety class 2.

Benefits

- Stabilised output voltage and short circuit resistant.
- Including power supply cable.
- Recommended for use with Cobra3.

Equipment and technical data

- Supply voltage: 100...230 V AC
- Supply frequency: 50...60 Hz

7.1 Heart and Circulatory System

P5950200 Ultrasonic Time Motion Mode

Time Motion-mode, slow heart (pump) rate.

Principle

Using a simple heart model, the wall motion is recorded with the ultrasonic time motion method (M-mode or also TM-mode). The heart rate and the cardiac output (CO) are determined from the recorded TM-mode curve.

Tasks

- 1. Simulate with heart model, the cardiac wall motion and record a time motion-image
- 2. On basis of the time-motion image, determine the cardiac output and heart rate parameters.

What you can learn about

- Pulse duration (DT)
- Heart rate
- End systolic diameter ESD
- End systolic volume ESV
- Cardiac output (CO)
- Heart wall motion
- Echocardiography
- Time-Motion-Mode
- Representation of motion sequences
- Ultrasonic echography

Main articles

Basic Set Ultrasonic echoscope	13921-99	1
Extension set: medical ultrasonic diagnostics	13921-04	1

Extension set: medical ultrasonic diagnostics

Function and Applications

Kit containing medical models for experiments in the field of medical diagnostics (echo-cardiography, breast tumour diagnostics and ophthalmology (thickness measurements in the eye).

Benefits

With this dummies real applications of ultrasonic diagnostics can be simulated in a very didactical manner.

Equipment and technical data

- 1 x simplified heart dummy for echocardiography
- 1 x breast dummy
- 1 x eye dummy

Electromyography (EMG) on the upper arm with Cobra4

P4030160

Compound action potentials of the biceps under load by 5-kg dumbbells.

Principle

With the exception of the heart muscle, the contractions of striated muscles can be controlled at will. This characteristic enables the observation of the activities of individual muscle groups. An electromyogram (EMG) can be used to measure (record) the electrical activity (i.e. the sum of the action potentials) of a muscle or even of several muscles on the skin surface when they contract. For an electromyogram, the electrical activity of a muscle is recorded in the relaxed state as well as during contractions of varying strength.

Tasks

- 1. To prepare an electromyogram (EMG) from a contracting or relaxing upper arm muscle (biceps) using surface electrodes.
- 2. Measurement of the frequency and the amplitude of the EMG at maximum concentration.

What you can learn about

- Electromyogram
- Muscle contractions
- Biceps
- Muscle potentials
- Compound action potentials

Main articles

Software Cobra4 - multi-user licence	14550-61	1
Cobra4 Sensor-Unit Electrophysiology: ECG, EMG, EOG	12673-00	1
Cobra4 USB-Link	12610-00	1
Shielded leads for electrophysiology, color- coded, 3/pkg	12673-01	1
Electrodes for ECG Sensor, 100 pcs.	12559-01	1

Software Cobra4 - multi-user licence

Function and Applications

The "measure Cobra4" measuring software leaves nothing to be desired.

As soon as a Cobra4 sensor is connected to a PC, irrespective of whether by Cobra4 Wireless or Cobra4 USB, the "measureCobra4" software opens completely automatically and shows the connected sensors, the required measuring windows and the current measuring data.

Measurement recording is then started with a single CLICK.

This all takes under 40 seconds!

Benefits

Embedded experiments with online documentation and measurement examples and automatic configuration.

P4030211 Muscle stretch reflex and determination of the conducting velocity (with Cobra3)

The reflex latency is approximately 40 ms. With a nerve tract length (Achilles tendon - spinal cord - muscle) of 2 m, the conduction velocity is 50 m/s.

Principle

Tapping the Achilles' tendon stretches the calf muscle and causes a reflex contraction in the muscle. This happens because the spindles sense the stretch and send an action potential to the motor neurons which then cause the muscle to contract. The amplitude of the muscle action potential is higher with tensed arm musculature than with relaxed arm musculature (approx. 3 mV compared to approx. 2 mV). The cause of this so-called Jendrassik effect is that, as a result of the tensing of the arm musculature, the other motoneurons of the spinal cord are innervated (facilitation).

Tasks

- 1. Trigger a stretch reflex in the lower leg musculature by tapping the Achilles tendon (Achilles tendon reflex)
- 2. Record the compound action potential and determine the reflex latency and the conduction velocity.

What you can learn about

- Electromyogram; Muscle stretch reflex; Achilles tendon
- Reflex latency; Conduction velocity; Jendrassik effect; Facilitation

Main articles		
Cobra3 BASIC-UNIT, USB	12150-50	1
Biological amplifier	65961-93	1
Reflex hammer, triggering	65981-10	1
Electrode commoning cable	65981-03	1
EMG electrodes, 3 off	65981-02	1
Software Cobra3 Universal recorder	14504-61	1

Cobra4 Experiment - available 2013

[deleted] Muscle stretch reflex and determination of the conducting velocity (with Cobra4)

P4030260

Biological amplifier

Function and Applications

With the aid of this biological amplifier a wide range of electrophysiological experiments can be carried out on human beings, insects and earthworms.

The frequency range for the measurement can be pre selected to match the different biological current sources as in ECG, EMG, EEG, EOG, ENG.

Human merging frequency and upper hearing threshold

P4040101

aoldfish	up to 4 kHz
frog	30 Hz to 15 kHz
chaffinch	200 Hz to 29 kHz
cat	up to 50 kHz
bat	up to 90 kHz
whale	up to 150 kHz

Animals also have a typical hearing range, and even vertebrates may have ranges differing very considerably from the human range.

Principle

The hearing range of the human depends greatly on age. While tones above the upper acoustic threshold are not perceived at all, individual sounds under the lower hearing threshold are perceived as a continuous deep tone (merging).

Tasks

- 1. Determine the merging frequency and upper acoustic threshold of test subjects of various ages.
- 2. Stimulate the ear with tones at the lower and upper acoustic threshold using a sine wave generator and headphones.

What you can learn about

- Acoustic hearing thresholds
- Merging frequency
- Hearing range
- Sine wave generator

Main articles

Digital Function Generator, USB	13654-99	1
Headphone, stereo	65974-00	1

Related Experiment

Hearing threshold and frequency differentiating threshold in humans with Cobra3

P4040215

Digital Function Generator, USB

Function and Applications

Digital signal generator for use as a programmable voltage source in practical or demonstration experiments, particularly in the disciplines of acoustics, electrical engineering and electronics

Benefits

- Can be used as universal stand-alone device or controlled via a USB interface
- Universally applicable thanks to broad, continually adjustable frequency range
- Usable as programmable voltage source via amplifier output
- Intuitive, menu-driven operation using control knob and function buttons, with help capability
- Illuminated monochrome graphic display for maximum visibility and readability
- Simple setting of voltage and frequency ramps in stand-alone mode
- Features V = f(f) output for easy reading of frequency in the form of a voltage - ideal for measuring circuit response to frequency ramps using an oscilloscope
- Low distortion and signal-to-noise ratio for brilliantly clear signals - ideal for acoustics/audio experiments

7.3 Hearing Sense

P4040311 Acoustic orientation in space with Cobra3

Overlapping of the two sound curves for the 0° position.

Principle and tasks

To localize a source of sound using an artificial head. To measure the time difference and the difference in intensity of the sound waves incident on each ear of the artificial head.

What you can learn about

- Spatial orientation; Artificial head
- Acoustic probes; Threshold angle
- Travelling time difference

Main articles

Cobra3 BASIC-UNIT, USB	12150-50	1
Artificial head w/o microphones	65975-01	1
Tripod base PHYWE	02002-55	1
Protractor scale with pointer	08218-00	1
Tuning fork, 440 Hz,on reson.box	03427-00	1
Acoustic probe for COBRA3	03544-00	2
Power supply 12V / 2A	12151-99	1

Cobra4 Experiment - available 2013

Acoustic orientation in space with Cobra4

P4040360

Artificial head w/o microphones

Function and Applications

For the demonstration of binaural (spatial) hearing and for measurement of the threshold angle.

Benefits

- Highly sensitive microphones can be positioned in the ears, which are faithful copies of the natural ones
- The microphones can be connected to the two amplifier inputs of a computer interface or storage oscilloscope.

Equipment and technical data

- Head made of styropor, anthrazit
- Ears made of gum

Time resolving capability of the human eye

P4070300

Principle

As excitation of the light-perceptive cells of the retina always takes a little longer than the light stimulus, only a limited number of stimuli per unit of time can be processed (time-related resolving power of the eye). If a light source is switched on and off periodically in increasingly rapid sequence the eye at first perceives the individual flashes, then the appearance of flicker occurs and finally the impression of a continuous light (fusion of the flicker).

Tasks

- 1. Determine the flashing frequency of an LED at which the impression of a continuous light just occurs
- 2. Change the direction of incidence of the light using a perimeter
- 3. Determine the flicker fusion thershold of the left and right eye in relation to the direction of incidence of light stimulus and the state of adaptation of the eyes.

What you can learn about

- Perimeter
- Time-related resolving power
- Flicker fusion frequency
- Light/dark adapted eye

Main articles

Digital Function Generator, USB, incl. Cobra4		
Software	13654-99	1
Perimeter, diameter 60 cm	65984-00	1
Stimulant light source	65985-00	1

Related Experiments

Determination of the human visual field

P4070200

Additive colour mixing and colour masking

P4070600

7.4 Visual Sense

P4070760 Electronystagmography (ENG) with Cobra4

Electronystagmogram of the eye movement during the observation of repetitive stripes on a rotating drum.

Principle

Electronystagmography (ENG) is an electrophysiological diagnostic procedure for measuring the movement of the eyes. Several electrodes measure the potential differences that are caused by the eye movements.

When looking at a moving, regular, repetitive pattern (e.g. the wagons of a passing train, stripes on a rotating drum), the eyes usually try to follow one point for as long as possible. When the object that the eyes are fixed on leaves the field of vision, the eyes then move rapidly in the opposite direction (regressive saccade) and seek a new fixation point.

Task

Record an electronystagmogram of your eye movements while looking at the stripes on a rotating drum.

What you can learn about

Electronystagmography (ENG)

Eye movements; Nystagmus

Μ	lai	n	a	ΠĨ	cl	es

Software Cobra4 - multi-user licence	14550-61	1
Cobra4 Sensor-Unit Electrophysiology: ECG, EMG, EOG	12673-00	1
Cobra4 Wireless-Link	12601-00	1
Strobe drum	65976-00	1
Power supply 012 V DC/ 6 V, 12 V AC, 230 V	13505-93	1
Motor, with gearing, 12 VDC	11610-00	1
Cobra4 Wireless Manager	12600-00	1

Strobe drum

Function and Applications

To produce moving stimuli for the investigation of the resolving power of the eye, for testing human reaction capacity and as a type of centrifuge for investigating the effects of mass acceleration on plants and animals.

Equipment and technical data

- Diameter: 32 cm
- Circumference: 100 cm
- Height: 20 cm
- Pattern: 180 black stripes
- With drive belt

Human electrooculography (EOG) with Cobra4

P4070560

Electrooculogram (alternating eye movements from the left to the right, and vice versa).

Principle

With this experiment, you can find evidence of the electrical activity that is generated during the movement of your eyes. Several electrodes attached to the skin of the face measure all the changes of the electrical voltage that are caused by the movement of the eyes. This method is referred to as electrooculography (EOG).

Tasks

- 1. Measure an electrooculogram (EOG) with a practised reader, a less practised (six year old) schoolchild and if possible, a test person who practises a rapid reading technique
- 2. Evaluate the rapid horizontal eye movements (sacchades) and the fixation periods.

What you can learn about

- Electrical field measurement
- Eye movements
- Dipole
- Sacchades
- Fixation period
- Practised reader versus schoolchild
- Rapid reading techniques

Main articles

Software Cobra4 - multi-user licence	14550-61	1
Cobra4 Sensor-Unit Electrophysiology: ECG, EMG, EOG	12673-00	1
Cobra4 USB-Link	12610-00	1
Shielded leads for electrophysiology, color- coded, 3/pkg	12673-01	1
Electrodes for ECG Sensor, 100 pcs.	12559-01	1
Crocodile clips for disposable electrodes, 3/pkg	12673-02	1

Cobra4 USB-Link

Function and Applications

The Cobra4 USB-Link is a highly efficient interface module for the transmission of sensor measuring values to a PC via a USB connection.

Benefits

- All Cobra4Sensor-Units can be connected to the Cobra4 USB-Link using a stable plug-in / lockable connection. Up to 400,000 measuring values/sec
- Several Cobra4 USB links can be connected to one PC (via USB ports on the PC or by USB hub); Automatic detection of all Cobra4 Sensor-Units; Power supply from USB connection, no additional external power supply required.
- Especially for fast measurements (acoustic, electrical etc.); Demonstration experiments
- Student's experiments (if a PC is available for each work group).

7.5 Other Senses

P4060360 Regulation of human body temperature with Cobra4

Regulation of the human body temperature through external influences.

Principle

How can our body temperature be regulated? This experiment shows why we sweat in summer and wear gloves in winter.

Tasks

- 1. To prepare curves demonstrating the regulation of body temperature.
- 2. To discuss different curves depending on the conditions at the hand of the test person.

What you can learn about

- Body temperature regulation
- Radiation
- Evaporation
- Skin temperature
- Heating/cooling effects

Main articles

12601-00	1
12600-00	1
12640-00	1
14550-61	1
04030-93	1
46359-00	1
03920-00	1
	12601-00 12600-00 12640-00 14550-61 04030-93 46359-00 03920-00

Cobra4 Sensor-Unit Temperature

Funktion and Applications

Cobra4 -20..110°C Sensor-Unit Temperature-semiconductor

Benefits

 It can be connected directly to the Cobra4 Wireless-Link, the Cobra4 Mobile-Link or the Cobra4 USB-Link.

Equipment and technical data

- Sensor jacket: stainless steel
- Measuring range: -20..+110°C; Absolute accuracy: ± 0.5°C
- Resolution: 0.05°C; Time constant: 7 s
- Data flow rate: 200 Hz; Connecting port: sub-D-15-pole
- Sensor length / diameter: 200 mm, 6 mm
- Cable length: 120 cm; Weight: 125 g

Test of human reaction capacity

P4070400

Reaction curve.

Principle

As in many technical processes, in the course of many biological functions the output values act back on the input values. With the many disturbing influences that affect biological systems, a feed-back reaction (control loop) of this type enables an equilibrium to be established. The components of a biological control loop (receptors, neurones, synapses, effectors) require a certain time for the transmission of a signal. This time between the onset of a disturbance (stimulus) and the reaction which it triggers is called the dead time. In this experiment the test subject follows a rectangular curve on a slowly rotating drum, using a felt-tip pen inserted into a slit. In a reaction test the dead time is determined.

Tasks

- 1. Measurement of dead time in a reaction test.
- 2. Analysis of the tansient response.
- 3. Determination of threshold frequency for stimuli.
- 4. Study of the effects of noise and alcohol on reaction capacity.

What you can learn about

- Reaction capacity
- Strobe drum
- Control loop
- Feedback reaction
- Dead time
- Follow-through time
- Threshold frequency

Motor with disk holder

Main articles Strobe drum Power supply 0...12 V DC/ 6 V, 12 V AC, 230 V

Power supply 0-12 V DC/ 6 V, 12 V AC, 230 V

Function and Applications

High quality power supply specially suitable for student experiments in electricity and electronics as well as for demonstration.

Equipment and technical data

- Stabilised
- Shortcircuit proof
- Output voltage: 1...12 V DC, 6 V / 12 V AC
- Rated current: DC 0...2 A / AC 5 A
- Ripple: max 1 mV
- Resistance: 1 m0hm
- Mains voltage: 230 V
- Housing dimensions: 194 x 140 x 130 mm

13505-93

65976-00

13505-93

11614-00

1

1

1

7.6 Respiration

P4090260 Measurement of the respiratory rate with Cobra4

Respiratory rate after strenuous exercise.

Principle

The respiratory rate increases with physical exertion. The amount of increase depends on different factors such as lung volume, age, sex and training condition. In this experiment the breathing frequency before and after physical exertion is measured and compared.

Tasks

The respiratory frequencies before and after bodily exertion are to be measured and compared.

What you can learn about

- Respiratory frequency
- Chest pressure measurement
- Breathing in resting postion
- In slight and strong exertion
- Eupnea
- Diaphragmatic and thoracic respiration

Main articles

Cobra4 Wireless-Link	12601-00	1
Cobra4 Wireless Manager	12600-00	1
Software Cobra4 - multi-user licence	14550-61	1
Cobra4 Sensor-Unit Thermodynamics, pressure abs. 2 bar and 2 temperature NiCr-		
Ni	12638-00	1
Parafilm -m-, w.100mm,I.38m,1roll	32986-00	1
Rubber tubing,vacuum,i.d.6mm	39286-00	1
Hose clamp for 10-17 mm diameter	40998-00	1

Related Experiments

How much air can our lungs contain with Cobra4?

P8001060

Direct determination of lung volume from a spirogram

P8001160

Does the lung volume depend on how tall you are?

P8001260

Diagnosis of lung disease (FEV) with Cobra4

P8001360

Principle

The forced expiratory volume (FEV) in one second is used in the diagnosis of lung illnesses. For the measurement of this here, the student carrying out the test breathes normally a few times, presses out all the air he or she can, takes a deep breath and holds it for a moment before (at the beginning of measurement) force breathing out as much air as he or she can right from the start of measurement.

Further to this, the vital capacity (as inspiratory VC = IVC) is again to be determined here as it is required for the FEV1 and IVC quotient which is called the Tiffeneau value:

Tiffeneau value = FEV1 / IVC [%] (1)

With healthy young people, this quotient is 75%. In the case of a so-called obstructive respiratory illness, such as bronchial asthma, the value is far below 75%, as the forced expiratory volume per second is greatly reduced. As this FEV value, just as the vital capacity, depends on the age of the person, among others, older people only reach a value of about 70%.

In contrast to the obstructive illnesses, there are also so-called restrictive respiratory illnesses which cannot be determined using this method.

Tasks

- 1. Determine the inspiratory vital capacity (IVC) in litres.
- 2. Determine the one-second forced expiratory volume in one second (FEV1) in litres.

What you can learn about

 Lung illness; Forced expiratory volume (FEV); Vital capacity; Tiffeneau value; Obstructive respiratory illness; Restrictive respiratory illnesses

Display of recorded data for determining the FEV in one second.

Main articles		
Cobra4 Wireless-Link	12601-00	1
Cobra4 Wireless Manager	12600-00	1
Software Cobra4 - multi-user licence	14550-61	1
Cobra4 Sensor-Unit Spirometry, Pulmonary volume and wind speed	12675-00	1

Cobra4 Sensor-Unit Spirometry, Pulmonary volume and wind speed

Function and Application

The Cobra4 Sensor Unit Spirometry is used for the measurement of the breath-dependent pulmonary volume.

A measurement of wind speed is also possible.

Benefits

Through the possibility of the recording of measurement one receives a diagram by means of which different function varaibles of the breath volume can be determined.

The velocity of the exhaled air is also displayed, therefore the Sensor-Unit Spirometry can be used to measure the wind speed.

TESS advanced Biology manual Cobra4 Electrophysiology: ECG, EMG, EOG

Article no. 12673-12

Description

Manual with 7 student experiments in the fields of electrophysiology (ECG, EMG, EOG) for data acquisition with the wireless interface system Cobra4.

Topics

- We investigate our heartbeat (Electrocardiography)
- We determine our heart frequency
- · We investigate our physical fitness (the heart under strain)
- We investigate our muscular power (Electromyography)
- We investigate our eye movements (Electrooculography)
- We measure our reading speed
- Electronystagmography

Benefits

 The students are enabled to carry out the experiments by themselves and to work on the topic of electrophysiology selfdependently.

Equipment and technical data

- Student sheets and corresponding teacher sheets
- In colour, 68 pages, incl. manual on software installation and handling.

This documentation contains the following experiments:

Electronystagmography

P0873560

We investigate our heartbeat - electrocardiography P1332760

We investigate our muscular power - electromyography **P1350360**

We measure our eye movements - electrooculography **P1350460**

We determine our heart frequency **P1522060**

We investigate our physical fitness - the heart under stress **P1522160**

Complete experiment list see www.phywe.com

12673-12

TESS advanced Applied Sciences set Electrophysiology, EP with english manual

Function and applications

Complete instrument set and accessories to perform computer-assisted experiments in human and animal physiology:

- The heart/ ECG (3 exp.)
- Muscles/ EMG (1 exp.)
- The eye/ EOG (3 exp.)

Benefits

 Wireless transmitter and receiver units to connect the electrophysiology sensor to a PC, can also be used for other sensors to measure parameters common in physics, chemistry, biology and medical education

Equipment and technical data

- Electrophysiology sensor-unit for ECG, EMG and EOG with connectors for three measurement leads
- 3 separate and shielded leads, color-coded (red, yellow, green) with 3.5 mm phone jacks to connect to the sensor-unit and 2 mm jacks to connect to reusable and disposable electrodes
- 3 reusable stainless steel ECG electrodes, contact area 30 x 80 mm with connector for leads
- 3 reusable EMG electrodes with cable and 2 mm connectors
- Disposable electrodes (100 pcs.)
- 3 crocodile clips for disposable electrodes
- Electrode gel to improve contact between electrodes and skin
- Software for wireless and wired data acquisition, for data analysis, automatic sensor recognition, automatic setup of measurement parameters and integrated experiment instructions
- 68-page manual with experimental literature
- Storage box for instrument set and accessories

Biochemistry

8.1 Biochemistry

92

8 Biochemistry

8.1 Biochemistry

P4120260 Ionic permeability of the cell membrane with Cobra4

Principle

The cell membrane regulates the transport of nutrients and water into the cell, and of waste products and water out of the cell. This can take place passively, e.g. on the basis of osmotic processes (differences in concentration), as well as actively.

Tasks

In this experiment, the selective permeability of an artificial cell membrane (dialysis tube) for H^+ and OH^- ions is to be examined.

What you can learn about

- Ionic permeability
- Artificial cell membrane
- Dialysis tube
- H+ ions
- OH- ions
- Osmotic processes

Main articles

Cobra4 Wireless-Link	12601-00	1
Cobra4 Wireless Manager	12600-00	1
Software Cobra4 - multi-user licence	14550-61	1
Cobra4 Sensor-Unit pH, BNC connector	12631-00	1
Magnetic stirrer Mini / MST	47334-93	1
pH-electrode, plastic body, gel, BNC	46265-15	1
Retort stand, h = 750 mm	37694-00	1

Determination of the Michaelis constant with Cobra4

P4120360

Conductivity-time-diagram of the urea hydrolysis by urease.

Principle

The enzymatic hydrolysis of urea in aqueous solution liberates carbon dixide and ammonia. The ions of these compounds increase the conductivity of the solution. Conductivity measurements can so be made to determine the rate of hydrolysis of urea by the enzyme urease at various substrate concentrations.

Task

The Michaelis constant can then be calculated from these values.

What you can learn about

- Michaelis constant
- Enzymatic hydrolysis of urea
- Conductivity measurement
- Bodenstein principle
- Enzyme-substrate complex
- Lineweaver-Burk plot

Main articles

Cobra4 Wireless Manager	12600-00	1
Cobra4 Wireless-Link	12601-00	1
Precision Balance, Sartorius TE 212, 210 g /		
0,01 g, 230V	48833-93	1
Software Cobra4 - multi-user licence	14550-61	1
Cobra4 Sensor-Unit Conductivity+	12632-00	1
Conductivity temperature probe Pt1000	13701-01	1
Urease soln.in 50% glycerol,10ml	31924-03	1

Cobra4 Experiments

Substrate inhibition of enzymes with Cobra4

P4120460

Enzyme inhibition (poisoning of enzymes) with Cobra4

P4120560

Cobra4 Sensor-Unit Conductivity+

8 Biochemistry 8.1 Biochemistry

P4120140 Determination of the isoelectric point of an amino acid (glycine) with Cobra3

Titration curve for hydrochloric acid glycine solution against 1 mol/l NaOH.

Principle

Amino acid molecules carry both acid and amino groups. They can therefore form both acidic anions and basic cations. The pH at which these two types of iones are both present in the same concentration is called the isoelectric point.

Tasks

This isoelectric point is to be determined by recording the titration curve for the amino acid glycine.

What you can learn about

- Isoelectric point
- Acidic anions
- Basic cations
- Zwitterions
- Equivalence (inflection) points
- p //s value
- Titration
- Motor piston burette

Main articles

Motor.piston burette,univer.50ml	36499-93	1
Cobra3 Chem-Unit, USB	12153-50	1
Software Cobra3 Chem-Unit	14520-61	1
Immers. probe NiCr-Ni, teflon, 200°C	13615-05	1
Magnetic stirrer Mini / MST	47334-93	1
pH-electrode, plastic body, gel, BNC	46265-15	1
Cable Chem-Unit/Motor piston burette	36501-01	1

Motor.piston burette, univer.50ml

Function and Application

For uniform portioning and reproducible titrations. Microprocessor controlled, with remote control.

36499-93

Cobra4 Experiment - available 2014

[deleted] Determination of the isoelectric point of an amino acid (glycine) with Cobra4

P4120160

Microbiology

9.1 Microbiology

96

9 Microbiology

9.1 Microbiology

P4140100 Fundamental microbiological working methods

NEW

Desinfection of equipment.

Principle

In order to prevent nutrient media and cultures from being contaminated with microorganisms that adhere to the working equipment, the equipment, nutrient media, and nutrient solutions must be sterilised. Petri dishes filled with a solidified nutrient medium are called plates in the specialised language of microbiologists. The nutrient medium is poured into the dishes either from test tubes, with one test tube holding the required quantity of ready-made medium for one Petri dish, or from Erlenmeyer flasks if a large number of plates needs to be prepared at the same time.

Tasks

- 1. Sterilisation of equipment.
- 2. Preparation of standard nutrient agar for bacteria.
- 3. Preparation of standard nutrient agar for moulds and yeasts.
- 4. Preparation of a standard nutrient solution for bacteria.
- 5. Preparation of slant agar tubes.
- 6. Inoculation of microorganisms.

What you can learn about

- Disinfection
- nutrient agar
- sterility

Main articles

Autoclave with insert	04431-93	1
Universal oven, 32 liters, 220 °C, 230 V	49559-93	1
Compact Balance, OHAUS TA 302, 300 g / 0.01		
g	49241-93	1
Ethyl alcohol, absolute 500 ml	30008-50	1
Bunsen burner, natural gas,w.cock	32167-05	1
Heating + cooking hotplate,230V	04025-93	1
Wire loop, streaking	64936-00	1

Related Experiment

Evidence of the effect of antibiotics, chemotherapeutics and disinfectants

P4140500

Autoclave with insert

Function and Applications

Portable autoclave

Equipment and technical data

- with precision manometer; thermometer
- integrated heating; application range up to 1.4 bar at 125°C or up to 2.7 bar at 140°C; volume: 12 liters; safety valve
- excess pressure safetyvalve; safety lock

Evidence of the spread of bacteria

P4140200

NEW

Inoculation of the agar plate.

Principle

Microorganisms are ubiquitous, i.e. they are present everywhere around us. This fact can be proved by touching the objects that are to be examined in view of the presence of microorganisms against the sterile nutrient medium in a Petri dish and by incubating the plates afterwards. The easy working methods that are to be applied for this purpose are described based on the following examples.

Tasks

Provide evidence concerning the presence of microorganisms

- 1. in the air.
- 2. on objetcs of dailys use.
- 3. of microorganisms on the skin.
- 4. of microogranisms on insects.

What you can learn about

- Disinfection
- Nutrient agar
- Sterility

Main articles

Autoclave with insert	04431-93	1
Drying oven UNB200, timer,32 I	46959-93	1
Compact Balance, OHAUS TA 302, 300 g/0.01g	49241-93	1
Heating + cooking hotplate, 230V	04025-93	1
Bunsen burner, natural gas, w.cock	32167-05	1
pH test sticks 6.5-10, 100 sticks	30301-04	1

Related Experiment

Microbial decomposition of mineral oil

P4100900

9 Microbiology

9.1 Microbiology

P4140300 Microscopy of bacteria

The bacteria are placed on the microscope slide.

Principle

The microscopic examination of microorganisms can be performed based on live specimens or in fixed and stained preparations. Live specimens of microorganisms are prepared in a drop of water (or liquid) culture. The aim of staining bacteria preparations is to increase the contrast between the bacteria and their environment from which they hardly stand out when unstained.

Tasks

Examine a bacteria preparation under a microscope and apply the standard methods that are described here in.

What you can learn about

- Bacteria
- Sterility
- Microscope
- Staining

Main articles

SWIFT Student Microscope M3602C-3	63021-99	1
Bunsen burner, natural gas,w.cock	32167-05	1
Culture vessel	64834-00	1
Immersion oil, 50 ml	31381-05	1

SWIFT student microscope M3602C-3

Function and Applications

The monocular SWIFT M3602C-3 was developed in particular for using in schools: robust, reliable, long-lasting, durable, against removing protected eyepieces and objectives. An economical LED-light which is supplied with energy by an accumulator, allows also a working far away from the next mains socket.

Benefits

- A whole metal case qualitatively produced on highest level and the exclusive use of metal parts in the interior of the microscope guarantees a long and trouble-free working.
- Eyepieces and objectives protected against removing.
- Plain stage with slowly closing clamp prevents damages at the specimen slides.

Determination of the microbial count

P4140400

NEVV

Flame treatment of spatula.

Principle

The microbial count is the number of viable microorganisms in one millilitre or gramme of the material to be examined, e.g. water, soil, milk, ice cream, etc. It is of high practical importance for the analysis of drinking water, soil, and foodstuffs. The microbial count can only be determined exactly if all of the related tasks are performed in a way that prevents the material that is to be examined from being contaminated with foreign microorganisms.

Task

Determine the microbial count of the sample.

What you can learn about

- Microbial count
- Microorganisms
- Analysis of drinking water

Main articles		
Autoclave with insert	04431-93	1
Drying oven UNB200, timer,32 l	46959-93	1
SWIFT Student Microscope M3602C-3	63021-99	1
Compact Balance, OHAUS TA 302, 300 g / 0.01		
g	49241-93	1
Diaphragm filter apparatus	64906-00	1
Diaphragm filters, pkg. of 100	64907-00	1
Heating + cooking hotplate,230V	04025-93	1

Diaphragm filter apparatus

Function and Applications

Diaphragm filter apparatus for determining the number of bacteria in water and soil samples, for harvesting organisms from cell suspensions and for sterile filtration of solutions.

Equipment and technical data

- made of borosilicate glass
- hopper 250 ml with rubber lid
- frit for membrane filter diameter: 50 mm
- base with spout
- metal clip

P2538400 Imaging of biological and medical micro and nanostructure with atomic force microscopy (AFM)

Topography of Skin Cross-Section (60 micrometer), Staphylococcus Bacteria (10 micrometer), Human hair (40 micrometer), and Butterfly Wing (10 micrometer) FLTR.

Principle

Dynamic Atomic Force Microscopy is used to image and visualize several biological samples at a sub micrometer scale. A collection of both pre-prepared and freshly prepared samples are investigated, e.g. bacteria, skin cross-section, human hair, butterfly wing, blood cells, and fly eye. With high resolution imaging the relation between small biological structures and their function can be identified and different treatments could be recognized at this scale. One example is the imaging of different skin layers showing dead and living epithelial layer, collagen layer, hair follicle and structures within it. Another example is the imaging of different regular lattice structures to clarify the colour effect of butterfly wings.

Tasks

- 1. Set-up the microscope and start up the software. Mount a cantilever and approach the tip towards a sample.
- 2. Use pre-prepared samples and investigate their topography by optimizing the imaging parameters. Discuss the relation between the imaged structures with their function.
 - Skin cross-section: different layers and their structures
 - Staphylococcus Bacteria: form, alignment and surface strucure
- 4. Prepare different samples and investigate their topography by optimizing the imaging parameters. Discuss the relation between the imaged structures with their function and treatment.
 - Blood cells: different form and structure, function
 - Butterfly wing: different regular structures, interference of light and colour effect
 - Fly eye: compound of many "eye" units, resolution, viewing angle, reaction time

 Human hair: treatment dependence of surface structure (coloured and non-coulored, wet and dry)

What you can learn about

- Atomic Force Microscopy
- Dynamic mode
- Feedback loop
- High resolution 3D imaging
- Nano Imaging of biological and medical samples
- Relation of structure and function
- Blood Cells; Butterfly Wing
- Insect Eye, Bacteria
- Skin; Human hair

Main articles		
Compact-Atomic Force Microscope (AFM)	09700-99	1
Sample support, 10 pcs, for Compact Scanning Tunneling Microscope and Atomic Force Microscope	09619-00	1

Related Experiment

[deleted] Basic methods in imaging of micro and nano structures with atomic force microscopy (AFM)

P2538000

PHYWE excellence in science

Neurobiology

10.1	Basics	102
10.2	Nerve Cell – Functions, Interactions and Networks	104
10.3	Stimuli Transmission	107
10.4	Literature	108

P4010462 Model experiment illustrating the development of resting potential with Cobra4

Principle

Biological membranes represent a boundary layer between two electrolyte solutions (e.g. Na+, K+, CI- and protein ions). An electrical potential difference arises at such boundaries when the mobility and concentration of the ions differ on the two sides of the boundary. In this experiment, the potential difference between two electrolyte concentrations separated by a membrane (cellophane or cation permeable) is detected by two silver chloride electrodes and measured with a mV meter.

Tasks

- 1. Measure the potential difference between two electrolyte concentrations.
- 2. Compare your results to calculated values.

What you can learn about

- Selective ion permeability of membranes
- Resting potential
- Diffusion potential
- Asymmetry potential
- Silver chloride electrodes
- Ion pump

Main articles

Cobra4 Mobile-Link set	12620-55	1
Cobra4 Sensor-Unit Chemistry	12630-00	1
Precision Balance, OHAUS AdventurerPro		
AV212, 210 g /0,01 g	49273-93	1
Ussing chamber	65977-00	1
Reference electrode, AgCl	18475-00	2
Immersion probe NiCr-Ni, steel, -50400 °C	13615-03	1
Membrane, permeable for cations, 5pcs	31504-02	1

Ussing chamber

Function and Applications

Ussing chamber, two polystyrene tubes with acrylic glass windows and flanges which can be screwed together.

Equipment and technical data

- Each container with abore for electrodes
- Vascular content 120ml
- Measuring surface approx. 7 cm²

Ionic permeability of the cell membrane with Cobra4

P4120260

pH-time-curve showing the release of H+ ions.

Principle

The cell membrane regulates the transport of nutrients and water into the cell, and of waste products and water out of the cell. This can take place passively, e.g. on the basis of osmotic processes (differences in concentration), as well as actively.

Task

In this experiment, the selective permeability of an artificial cell membrane (dialysis tube) for H^+ and OH^- ions is to be examined.

What you can learn about

- Ionic permeability
- Artificial cell membrane
- Dialysis tube
- H+ ions
- OH- ions
- Osmotic processes

Main articles

Cobra4 Wireless Manager	12600-00	1
Cobra4 Wireless-Link	12601-00	1
Software Cobra4 - multi-user licence	14550-61	1
Cobra4 Sensor-Unit pH, BNC connector	12631-00	1
Magnetic stirrer Mini / MST	47334-93	1
pH-electrode, plastic body, gel, BNC	46265-15	1
Retort stand, h = 750 mm	37694-00	1

Cobra4 USB-Link

Function and Applications

The Cobra4 USB-Link is a highly efficient interface module for the transmission of sensor measuring values to a PC via a USB connection.

Benefits

- All Cobra4Sensor-Units can be connected to the Cobra4 USB-Link using a stable plug-in / lockable connection. Up to 400,000 measuring values/sec
- Several Cobra4 USB links can be connected to one PC (via USB portson the PC or by USB hub). Automatic detection of all Cobra4Sensor-Units.
- Power supply from USB connection, no additional external power supply required.

P4010511 Neurosimulator: membrane time constant and low-pass filtering with Cobra3

Result of a single stimulation.

Principle

To show the membrane time constant the Neurosimulator is excited by a rectangular pulse from a synapse. The intracellular potential only increases slowly, and then falls off even slower when the stimulation stops. As a result of this behaviour, rapid and brief stimulating signals can only be weakly transmitted (lowpass characteristic of the membrane). In the second part of the experiment, low-pass filtering is investigated. When short rectangular impulses act at relatively large intervals, the intracellular potential can follow the stimulating pulse frequency. The low- pass characteristic of the membrane allows the conversion of the low frequencies to a response.

Tasks

To use a nerve function model to work on the following themes:

- The time constant of the nerve membrane and intracellular potential
- The low-pass characteristic of the nerve membrane

What you can learn about

- Time constant of nerve membrane
- Intracellular potential
- Low-pass characteristic

Main articles

Cobra3 BASIC-UNIT, USB	12150-50	1
Neuro-simulator	65963-00	1
Neuro-simulator, power supply	65963-93	1
Software Cobra3 Universal recorder	14504-61	1
Power supply 12V / 2A	12151-99	1

Related Experiment

Neurosimulator: mode of operation of excitatory synapses with Cobra3

P4010611

Cobra4 Experiment - available 2014

[deleted] Neurosimulator: membrane time constant and low-pass filtering with Cobra4

P4010560

Neuro-simulator, power supply

Function and Applications

The operating unit comprises the power supply of up to four neuron units, three touch simulators with a variable stimulating intensity and an optic sensor.

Neurobiology: the nerve cell with Cobra3

P4010711

maximum stimulus intensity and low threshold (here: 0) creates fast frequency of action potential.

Principle

Action potential arises by influx of sodium ions through the sodium channels of the nerve cells. Stimulus movement along the axon occurs due to the consecutive influx of sodium ions along its cell membrane. With the measurement method of this experiment the action potential can be displayed (together with intracellular potential).

Tasks

Use the nerve function model to study the following aspects of a nerve cell

- 1. intercellular potential
- 2. action potential

What you can learn about

- Comparison between low and high threshold levels
- Comparison between low and high stimulus levels
- Membrane time constant and low pass filtering
- Membrane time constant
- Low-pass filtering
- Excitatory Synapse
- Depolarisation
- Temporal summation
- Spatial summation
- Synaptic amplification by terminal branches
- Effect of decreasing stimulus
- Hebbian synapse
- Synaptic learning and forgetting
- Inhibitory synapse; Hyperpolarization
- Spacial inhibitory-excitatory summation; Veto synapse

Main articles

Neurobiology Lab, 230 V

65963-11

Related Experiment

Neurobiology: nerve cell interactions (with Cobra3)

P4010811

Cobra4 Experiments - available 2014

[deleted] Neurobiology: the nerve cell with Cobra4

P4010760

[deleted] Neurobiology: nerve cell interactions with Cobra4

P4010860

Neurobiology Lab, 230 V

Function and Applications

Complete instrument set consisting of neuron unit, operating unit, computer interface, measure software for data acquisition and analysis, diverse cables, experiment manual describing 31 experiments.
P4010911 Neurobiology: neural networks

Transient responses: ON neuron.

Principle, tasks and what you can learn about:

To use a neve function model to study the following aspects of neural networks:

Transient (phasic) responses: Focus on visual sense

- Transient responses: ON neuron
- Transient responses: OFF neuron
- Simultaneous activation of ON and OFFneurons

Neuronal oscillatory (body clock)

Rotating excitation (short-term memory)

- Rotating excitation variation 1:dampening
- Rotating excitation variation 2:convulsive excitation
- Rotating excitation variation 3:equilibrium

Special anatomical circuits

- Cerebral cortex and sensoric learning
- Functional characteristic of a triad

Main articlesNeurobiology Lab, 230 V65963-11Additional nerve cell65963-10

Related Experiment

Neurobiology: complex neural networks with Cobra3

P4011011

Cobra4 Experiment - available 2013

[deleted] Neurobiology: neural networks with Cobra4 P4010960

Additional nerve cell

Function and Applications

Additional nerve cell unit to complement the Neurobiology Set.

65963-10

1

2

Recording of nerve and muscle potentials by mechanical stimulation at the rear end of an earthworm with Cobra3

P4010111

Result with weak stimulation.

Principle

Earthworms have a median giant nerve fibre, which reacts to stimulation at the front end, and two lateral giant fibres, which can be stimulated at the rear end. The experiment covers the following topics: the course of a biphasic action potential over time, estimation of the conduction velocity and coding of the stimulant intensity as frequency modulation.

Tasks

- 1. Stimulate the earth worm with weak, moderate and strong stimulation.
- 2. Observe the course of the biphasic action potential over time.
- 3. Estimate the conduction velocity.

What you can learn about

- Nerve and muscle potentials
- Mechanical stimulation
- Biphasic action potential
- Frequency modulation
- Median and lateral giant nerve fibres
- Conduction velocity

Main articles

Cobra3 BASIC-UNIT, USB	12150-50	1
Biological amplifier	65961-93	1
Earthworm experiment chamber	65981-20	1
Stimulus bristle, triggering	65981-21	1
Software Cobra3 Universal recorder	14504-61	1
Power supply 12V / 2A	12151-99	1
Alligator clips, insulated, black, 10 pcs.	07276-15	1

Related Experiments

Recording of nerve and muscle potentials by mechanical stimulation at the front end of an earthworm with Cobra3

P4010211

Recording of nerve potentials after the electrical stimulation of an anaesthetised earthworm with Cobra3

P4010311

Cobra4 Experiment - available 2014

[deleted] Recording of nerve and muscle potentials by mechanical stimulation at the rear end of an earthworm with Cobra4

P4010160

Labortory Experiments Biol., L.V.

Article no. 16506-02

Description

Instructions for more than 54 experiments covering various areas of biology.

Topics

- Nervous system
- Heart and circulation
- Musculature
- Hearing
- Balance
- Sensing temperature
- Sight
- Behaviour
- Respiration
- Ecology and the environment
- Plant physiology
- Biochemistry

Format

DIN A4 handbook, spiral binding, b/w, 190 pages

This documentation contains the following experiments:

Recording of nerve and muscle potentials by mechanical stimulation at the rear end of an earthworm (Cobra3) **P4010111**

Recording of nerve and muscle potentials by mechanical stimulation at the front end of an earthworm (Cobra3) **P4010211**

Recording of nerve potentials after the electrical stimulation of an anaesthetised earthworm (with the Cobra3 Basic-Unit **P4010311**

Model experiment illustrating the development of resting potential (with Cobra4) **P4010462**

Neurosimulator: membrane time constant and low-pass filte-ring (with the Cobra3 Basic-Unit) **P4010511**

Neurosimulator: mode of operation of excitatory synapses (with the Cobra3 Basic-Unit) **P4010611**

Neurobiology: the nerve cell **P4010711**

Neurobiology: nerve cell interactions **P4010811**

Neurobiology: neural networks **P4010911**

Neurobiology: complex neural networks **P4011011**

Changes in the blood flow during smoking (with Cobra4) **P4020460**

Muscle stretch reflex and determination of the conducting velocity (with Cobra3 Basic-Unit) **P4030211**

Human merging frequency and upper hearing threshold **P4040101**

Hearing threshold and frequency differentiating threshold in humans (with the Cobra3 Basic-Unit) **P4040215**

Acoustic orientation in space (with the Cobra3 Basic-Unit) **P4040311**

Phototropism and geotropism **P4050100**

Complete experiment list see www.phywe.com

16506-02

P4010911 - Neurobiology: neuronal networks - page 115

Biotechnology

11.1 Biotechnology

110

11 Biotechnology 11.1 Biotechnology

P1313600 Fermentation of molasse to ethanol with yeast

Destillation of the fermented mash.

Principle

As a result of the need to save energy and the increased consciousness of environmental problems, biotechnological production methods are on the advance. Fermenters are used for the biotechnological production of enzymes and other products using bacteria, yeast and cell cultures. For educational purposes a bubble bioreactor used in this experiment is a more convenient and economical alternative to commercial fermenters. To demonstrate how fermenters work, in this experiment molasse which is a waste product of sugar production is fermented in the so-called batch process.

Tasks

- 1. Molasse is to be fermented to ethanol.
- 2. Determine the yield of your process.

What you can learn about

- Fermentation
- Ethanol
- Bioreactor
- Yeast

Main articles

Precision Balance, OHAUS AdventurerPro		
AV412, 410 g /0,01 g	49274-93	1
Immersion thermostat Alpha A, 230 V	08493-93	1
Heating mantle f. roundbottom flask, 250ml	49542-93	1
Bubble bioreactor	65999-00	1
Frame for complete experiments	45500-00	1
Power regulator	32288-93	1
Bath for thermostat, makrolon	08487-02	1

Panel for complete experimental setups

Function and Applications

Panel with regular punching to receive the hooks of the holder horizontal or vertical positioning in the frame, one panel is neccessary for each experiment

Equipment and technical data

- Material: sheet steel, powder painted with good mechanical and chemical resistance
- Dimensions: 65x48.8x2.5 cm

Microbial synthesis of ethanol by Zymomonas mobilis subsp. mobilis

P1313700

Principle

The properties of the microorganism Zymomonas mobilis have been used in the production of alcohol for centuries. Nevertheless, the bacterium in palm wine and pulgue, the fermented juice of the agave plant, was not identified and recognised as being responsible for their alcoholic fermentation until the twentieth century. Zymomonas was found to synthesize ethanol much more effectively than yeast does. In this experiment, Zymomonas mobilis is grown in a bioreactor. The medium is blended by means of a magnetic stirrer and its temperature is controlled by means of a heating coil and a water bath with thermostats. The discharge of used medium and the supply of fresh medium can be dispensed with. This is a so-called 'static culture' (batch culture). The cell density can first be determined photometrically in the samples taken and the cell count can be determined in the counting chamber, and those data can be used to generate a growth curve. Chemical and enzymatic tests show the consumption of glucose and the production of ethanol. The experiment is easy to perform. It does not take long to prepare. The evaluation of the test results is very conclusive and clearly illustrates the methods of biotechnology.

Tasks

- 1. Prepare the agar plates that are to be used for strain maintenance of the bacteria to be used.
- 2. Determine the course of the fermentation of Zymomonas by a turbidimetric procedure.
- 3. Determine the cell count microscopically in a haemocytometer

What you can learn about

- Turbidimetry; Zymomonas mobilis; Cell count
- Haemocytometer; Yeast; Fermentation

Enzymatic processes.

Main articles		
Spectrophotometer S800, 330800 nm	35600-99	1
Autoclave with insert	04431-93	1
Drying oven UNB200, timer,32 I	46959-93	1
Centrifuge with angle rotor 8x15 ml	65973-93	1
Immersion thermostat Alpha A, 230 V	08493-93	1
Bioreactor, 1 I, 7 connections	66000-00	1

Spectrophotometer S800, 330...800 nm

Function and Applications

This visible diode array spectrophotometer has been designed to meet the routine spectroscopy needs of customers requiring a small, lightweight instrument that is easy to use.

This photometer is ideal for use in educational, biotech or industrial establishments.

P1313800 Production of amino acids by fermentation of Corynebacterium glutamicum

Preparation of the strain maintenance plate.

Prinicple

A bacteria culture of Corynebacterium glutamicum is used in a bioreactor at a constant temperature of 30°C to produce amino acids. Under these conditions the fermentation of Corynebacterium glutamicum takes place in a so-called batch process for 7 to 10 days.

Tasks

- 1. Start the fermentation of Corynebacterium glutamicum
- 2. Determine the yield of the process
- 3. Determine the composition of the mixture of amino acids using TLC

What you can learn about

- Fermentation; Thin layer chromatography; Amino acids

Main articles

Set of Precision Balance Sartorius CPA 423S and measure software, 230 V	49223-88	1
Autoclave with insert	04431-93	1
Drying oven UNB200, timer,32 I	46959-93	1
Immersion thermostat Alpha A, 230 V	08493-93	1
Bioreactor, 1 I, 7 connections	66000-00	1
Cobra4 Mobile-Link set, incl. rechargeable batteries, SD memory card, USB cable and		
software "measure"	12620-55	1
Frame for complete experiments	45500-00	1

Bioreactor, 1 I, 7 connections

Function and Applications

For the production of biotech products, such as Citric acid or penicillin using bacteria, yeasts, and lower fungi.

Benefits

- The connectors serve for sample removal, introduction of measuring probes, introducing and removing medium, addition of acids or bases and for air venting.
- In this bioreactor, mixing and tempering are carried out using a magnetic stirrer with hot plate or heating coil.
- An aquarium pump is used for a aeration.

Bacteria and mining - microbial extraction of ore by Thiobacillus P1313900 ferrooxidians and thiooxidans

2 FeS₂ + 7 O₂ + 2 H₂O → 2 FeSO₄ + 2 H₂SO₄ 4 FeSO₄ + O₂ + 2 H₂SO₄ → 2 Fe₂(SO₄)₃ + 2 H₂O Chemical process during extraction.

Principle

Scientists first recognised importance of certain bacteria for the extraction of metals from ore in the 1950s. Nowadays the microbial ore leaching with so-called 'lean ores' represents more than 10% of the total production of copper in the USA alone. The bioreactor shown here can be used to clearly demonstrate to the students this method of extraction (e.g. copper from copper ore) using such bacteria (*Thiobacillus ferrooxidans*).

Tasks

- 1. Reactivate and multiply the two bacteria strains Thiobacillus ferrooxidans and Thiobacillus thiooxidans
- 2. Extract copper from copper ore using the "percolator leaching" method

What you can learn about

- Ore
- Bubble bioreactor
- Oxidation
- Bacterial leaching
- Microbial extraction

Main articles

Set of Precision Balance Sartorius CPA 423S		
and measure software, 230 V	49223-88	1
Autoclave with insert	04431-93	1
Drying oven UNB200, timer,32 I	46959-93	1
Cobra4 Mobile-Link set, incl. rechargeable batteries, SD memory card, USB cable and		
software "measure"	12620-55	1
Bubble bioreactor	65999-00	1

Bubble bioreactor

Function and Applications

This consists of a long glass tube jacket for temperature control and a glass insert tube which reaches from tip to tip. The jacket has two hose nipples for entry and exit of the temperature controlling liquid. The GL 32/18 opening in the bottom of the reactor is for aeration, the two openings at the top (GL25/8 and GL 18/8) are for the addition of the culture medium or for removal offinal products.

Equipment and technical data

- length: 400 mm
- diameter: 50 mm

11 Biotechnology 11.1 Biotechnology

P1314000 Immobilised cells in the service of biotechnology – microbial synthesis of acetic acid with Acetobacter aceti

Ethanol + NAD* $\stackrel{AO+}{\rightleftharpoons}$ Acetaldehyde + NADH + H* Acetaldehyde + NAD* + H₂O $\stackrel{AOH}{\rightleftharpoons}$ Acetic acid + NADH + H*

The biochemical oxidation of alcohol.

Principle

As early as 1864, Louis Pasteur recognised that both alcoholic fermentation and the oxidation of alcohol to acetic acid depend upon the metabolic performance of specific bacteria. Gram-negative, flagellated rods are responsible for the formation of acetic acid. Two large groups are differentiated here, the representatives of one of these are comprised of the genus Acetobacter, and those of the other of the genus Gluconobacter. In Nature, these bacteria are to be found on fruit, in floral nectar and leaf nectar, as well as in beer, wine and fruit juices. They are capable of utilising simple sugar as well as simple alcohol as substrate.

Tasks

- 1. Determine the ethanol content by an enzymatic indicator reaction
- 2. Determine content of acetic acid by an enzymatic indicator reaction
- 3. Produce acetic acid with the "Rapid vinegar procedure"

What you can learn about

- "Rapid vinegar procedure"
- Acetic acid
- Immobilised cells
- Bacterial culture

Main articles

Set of Precision Balance Sartorius CPA 423S		
and measure software, 230 V	49223-88	1
Spectrophotometer S800, 330800 nm	35600-99	1
Autoclave with insert	04431-93	1
Drying oven UNB200, timer,32 I	46959-93	1

Centrifuge w. angle rotor 8x15 ml	65973-93	1
Peristaltic pump, 220V, 8 to 60 ml/min.	35705-93	1
Immersion thermostat Alpha A, 230 V	08493-93	1

Centrifuge w. angle rotor 8x15 ml

Function and Applications

Centrifuge with angle rotor.

Equipment and technical data

- Contin.speed adjustm max. 6000 U/min
- Connection voltage 230V/ 50-60 Hz; Power requirment 60W
- Overheating protection; Impulse key for short runs

Modern Imaging Methods

X-ray Imaging	116
Magnetic Resonance Imaging	129
Ultrasonic Imaging	131
Nano Imaging	135
Literature	138
	X-ray Imaging Magnetic Resonance Imaging Ultrasonic Imaging Nano Imaging Literature

XRE 4.0 expert set -

Details at a glance

XXL Chamber

- Large space for large experiments
- Temperature-controlled, internallyventilated experimentation space

Experience the perfect synthesis of innovative technology, highest level of safety, well-proven PHYWE quality and modern design. Extensive performance characteristics and ideas make working with the PHYWE XR 4.0 a special experience.

We have presented some device highlights for you here.

Tube XChange Technology

- Self-adjusting X-ray tubes with quick-change technology
- Contact protection against hot parts
- 4 anode materials for specific experiments (W, Mo, Cu, Fe)

Touch Panel

- Simultaneous control, manually and by computer
- Interactive, intuitive handling
- Self-explanatory icons for fast operation

3View - Insight provides a transparent view

- Exceptional observability of the experimentation space
- Extra-large window front on 3 sides (Diagonals: : 18"/18"/14", 46cm/46cm/36cm)

2HVWI

DHYWE

PHYWE excellence in science

12 Modern Imaging Methods 12.1 X-ray Imaging

X-ray XR 4.0 PHYWE

Optical bench with riders

Radiography experiments
 simple, precise positioning of

X-ray PHYME

optical components

- Electrical and mechanical safety lock
- Prevents door opening with switched on X-radiation
- thus offers the highest possible safety
- patend pending

Goniometer (not pictured)

- Self-calibrating
- Collision protected
- Easy, safe handling

MultiLINK

- Connection field internal and external
- USB 2.0, N₂, BNC, XRED, Aux, etc.
- No annoying "cable-laying"
- In addition, extra-large cable conduit

Safekeeping drawer

- All accessories are kept safely and always ready at hand
- Lockable

High-resolution TFT backlit display

-

diagonal 4,3"

me 600 r

np / s

Esc

- 480 x 272 Pixel
- 16 Bit, 65.536 colors
- with LED lighting
- Optimal, dynamic representation of all important device parameters and measured values

XR 4.0 expert unit – Sets for all applications

Basic set	Core components (incl. further Accessories)	Areas of application	Application examples
XRE 4.0 expert set Art. No. 09110-88 (Basic set)	 XR 4.0 expert unit (X-ray device); Tungsten tube (W), XR measure 4.0 X-ray software, optical bank TESS expert manual fluorescent screen USB cable, mains cable + adaptor 	Phy An Bir Med Geo Eng.	 Basics & applications of X-radiation Radiographic experiments Radiology

Extend the basic set with the respective extension set according to area of application

Extension sets (optional)	Core components (incl. further accessories)	Areas of application	Application examples
XRP 4.0 solid-state physics Art. No. 09120-88	 Goniometer, GM counter tube, LiF / KBr single crystal absorption set 	Phy	 Diffractometry X-ray spectroscopy Bragg-reflection / Bremsspectrum Characteristic lines
XRC 4.0 characterization Art. No. 09130-88	 3 X-ray tubes (Cu, Fe, Mo) Goniometer, GM counter tube; LiF / KBr single crystal 	Phy	 Radiation spectrums of the anode Moseley law Rydberg constant Duane-Hunt law
XRS 4.0 structure analysis Art. No. 09140-88	 Goniometer, GM counter tube, LiF / KBr / NaCl single crystal Crystal holder powder samples 	Phy And Geo Eng	 Structure investigations Laue patterns Debye-Scherrer recordings X-ray analysis
XRM 4.0 material analysis Art. No. 09160-88	 Goniometer X-ray energy detector Multi-channel analyzer Sample sets 	Phy A	 X-ray fluorescence spectroscopy Non-destructive testing (NDT) Compton Effect Energy-dispersive experiments
XRI 4.0 radio photo- graphy ArtNr. 09150-88	 Camera Radiographic object Model loader Implant model 	Bir Med Ger	 Basics for the X-ray image provision Radiography Radiology Non-destructive testing (NDT)
XRD 4.0 dosimetry and radiation damage Art. No. 09170-88	 Parallel-plate capacitor Power supply unit 600 V DC current amplifier Camera 	Phy Bc	 Dosimetry Degradation Damage Ionization of air
XRCT 4.0 computer tomo- graphy Art. No. 09180-88	 Direct, digital X-ray image sensor Rotation unit, vertical rotation measure Tomography software package 	Phy Bic Med Eng	 3-dimensional reconstruction Sectional drawings in respective position Direct, digital image provision
XRW 4.0 wireless demonstration Art. No. 09115-88	 Digital display panel Cobra4 Display-Connect Transmitter and receiver, etc. 	Phy A Br Med Ger (Eng	 Demonstration experiments (operation without computers) Placard-style representation of the mea- sured values and parameters

Computed tomography

P2550100

CT of an USB flash drive (movie).

Principle

The CT principle is demonstrated with the aid of simple objects. In the case of very simple targets, only a few images need to be taken in order to achieve a good result. The more complicated the objects are, the more images are necessary in order to show all the details. In addition, special samples are used to demonstrate how artefacts are generated and what causes beam hardening.

Tasks

- 1. Record a CT scan of the simple objects. While doing so, vary the number of steps.
- 2. Record a CT scan of the metal samples and analyse the result in view of beam hardening.

Related topics

- Beam hardening
- Artefacts
- Algorithms

Main articles

XRE 4.0 X-ray expert set	09110-88	1
XR 4.0 X-ray Direct Digital Image Sensor (XRIS) with USB cable	09057-40	1
XR 4.0 X-ray CT Z-rotation stage (XRstage)	09057-42	1

Best fitting X-ray sets for this experiment:

XRE 4.0 X-ray expert set

09110-88

XRCT 4.0 X-ray Computed Tomography upgrade set

EduMedia Award for Didactical Software for:

Allan M. Cormack (left) Sir Godfrey Newbold Hounsfield (right) 1979, Nobel Prize in Medicine

12 Modern Imaging Methods 12.1 X-ray Imaging

XRE 4.0 X-ray expert set

Function and Applications

Basic set covering the fundamental principles and areas of applications of X-rays, e.g. fluoroscopy experiments and X-ray photography. It can be extended by upgrade sets for specific applications and topics.

Benefits

- Safety concept complying with the applicable standards and regulations
- S-Lock PHYWE novel Safety interlock
- Tube XChange Technology
- Touch Panel
- 3View Insight provides a transparent view
- High-resolution TFT backlit display
- XXL Chamber
- Optical bank with riders
- Goniometer (optional)
- MultiLINK
- Safekeeping drawer

Equipment and technical data

The set includes the following components:

- XR 4.0 expert unit
- XR 4.0 X-ray plug-in unit with a tungsten X-ray tube
- XR measure 4.0 X software
- TESS expert manual "Experiment with X-radiation"
- USB cable
- Mains cable with adaptor
- Optical bech with
- Quick-start guide
- Operating instruction
- Flourescent screen

Recommended upgrade sets for various applications and topics

- XRW 4.0 X-ray wireless demonstration upgrade set, 09115-88
- XRP 4.0 X-ray solid state upgrade set, 09120-88
- XRC 4.0 X-ray characteristics upgrade set, 09130-88
- XRS 4.0 X-ray structural analysis upgrade set, 09140-88
- XRI 4.0 X-ray imaging upgrade set, 09150-88
- XRM 4.0 X-ray material analysis upgrade set, 09160-88
- XRD 4.0 X-ray dosimetry and radiation damage upgrade set, 09170-88
- XRCT 4.0 X-ray Computer Tomography upgrade set, 09180-88

09110-88

XRCT 4.0 X-ray Computed Tomography upgrade set

Function and Applications

Upgrade set as an extension of the XRE 4.0 expert set (09110-88). Show the fundamental principles of computed tomography (CT) with the aid of a state of the art system whose technology is currently applied in medical and industrial applications. The interfaces of this method towards medicine, materials science, and engineering make the "Computed Tomography Set" particularly suitable for laboratory experiments and lectures in physics, medicine, and materials science. The set covers the following experiments and topics:

- X-ray imaging of biological and technical samples
- Non-destructive testing (NDT)
- Digital image processing for the generation of three-dimensional images of an object
- digital images of Laue patterns

Benefits

- Direct aquisition of the X-ray images by a direct X-ray direct digital image sensor: No extra fluorescent screen is necessary, experimentation under daylight conditions is possible.
- High-performance image sensors for the direct digital X-ray radiography to create superior image quality, and high resolution based on CMOS technology. Eeven pictures with low cantrast like Laue patterns are made in less than 1 min
- Z-axis rotation of the sample to be analysed: Movement of the sample is not influenced by gravitational effects, rigid bodies of flexible size can be analysed on a simple way.
- Acquisition of high resolution CT scan, 360° image stack within 10 minutes (one frame per second, one degree per frame)

Equipment and technical data

The set includes the following components:

- XR 4.0 direct digital image sensor, 09057-41
 - Active area 5 x 5 cm²
 - Resolution 46µm
 - Image depth 12 bit
 - USB 2.0 interface
- XR 4.0 CT object Z-rotation unit, 09057-41
 - Angle resolution < 1 degree
 - Motorised, USB 2.0 interface
 - stepper motor with 4200 steps/360°
- Measure XRt 4.0 tomography software package, 14421-61
- XR 4.0 CT accessories, 09057-42

XR 4.0 X-ray Direct Digital Image Sensor (XRIS)

Function and Applications

Digital X-ray camera to perform X-ray imaging (radiography), and X-ray Computer Tomography (CT) experiments. Particularly suitable for experiments in lab courses and lectures in physics, medical education and material sciences.

Benefits

- Direct aquisition of the X-ray images by a direct X-ray direct digital image sensor: Experimentation under daylight conditions
- High-performance CMOS image sensors for the direct digital Xray radiography to create superior image quality, high resolution, and large active area images based on CMOS technology.

Equipment and technical data

- Active area 5 x 5 cm², Resolution 48 μm, Image depth 12 bit
- USB 2.0 interface

The includes the XRIS camera and USB-cable to connect it to the PC.

09057-40

XR 4.0 X-ray CT Z-rotation stage (XRStage)

Function and Applications

Rotating tabel to position samples e.g. for the CT application.

Benefits

 Z-axis rotation of the sample to be analysed: Movement of the sample is not influenced by gravitational effects, rigid bodies of flexible size can be analysed on a simple way.

Equipment and technical data

- Angle resolution < 1 degree, Motorised
- plug&measure interface, stepper motor with 4200 steps/360°

09057-42

XR 4.0 Software measure CT

Function and application

Software package of the "measure" series for controlling the digital X-ray sensor XRIS and the X-ray unit XR 4.0. The data can be exported in all of the established formats and then evaluated with the aid of professional software. This ensures a smooth transition from training to professional application.

Advantages and features

Plug & measure:

- The intuitive user concept considerably simplifies the operation of the complex devices and puts the experiment into the focus of attention.
- Automatic identification of the connected devices of the XR 4.0 series. Working directly without the need for specialist knowledge.

Double Control:

• Simultaneous operation of the XR 4.0 X-ray unit via manual control or via a computer.

Reference experiments:

 The comprehensive collection of reference experiments and projects simplifies the selection of suitable experiments and can be used as a template for own experiment scripts/laboratory handbooks.

Clear structure:

- The software is clearly divided into the 4 basic steps: "Parameters", "CT scan", "Reconstruction", and "3D view". As a result, even beginners can easily familiarise themselves with the topic.
- Visualisation of the devices:

In the first steps, numerous parameters must be set, e.g. the anode current and voltage. In order to facilitate these steps, the corresponding devices are displayed as virtual devices.

CT scan with live reconstruction:

- Sectional images are reconstructed during the scanning process. While at the beginning of the measurement hardly anything can be discerned, the contours become increasingly clear over time.
 - Reconstruction as an independent step:
- Reconstruction is the most important process step in computed tomography. Again, numerous parameters play an important role during this step. They can be changed in their own screen and their effect can be observed directly in an example image.

x,y,z-viewer and 3D view

 This area shows the results of the reconstruction process. The data can now be evaluated with professional software that the students will encounter in their future daily work. The data can be exported in all of the established formats.

Radiographic examination of objects

P2540020

Radiography of a digital alarm clock.

Principle

An X-ray tube produces X-rays that cause a fluorescent screen to emit light. Objects that are located between the X-ray source and the fluorescent screen will be irradiated so that their inner structure becomes visible. If one varies the anode current and voltage, the change in intensity can be observed in a qualitative manner on the fluorescent screen.

Tasks

- 1. X-ray an object and observe the result on the fluorescent screen.
- 2. Vary the anode current and voltage and observe the result on the fluorescent screen.

What you can learn about

- X-ray tube
- Absorption of X-rays
- Radiography
- Fluorescence

Main articles

XR 4.0 expert unit	09057-99	1
XR 4.0 X-ray plug-in unit W tube	09057-80	1
XR 4.0 X-ray fluorescent screen	09057-26	1

Best fitting X-ray set for this experiment:

XRE 4.0 X-ray expert set

Wilhelm Conrad Röntgen 1901, Nobel Prize in Physics

12 Modern Imaging Methods 12.1 X-ray Imaging

P2541901 Contrast medium experiment with a blood vessel model

Blood vessel model with the contrast medium half filled.

Principle

When a blood vessel model is irradiated with X-rays, the blood vessels themselves are not visible at first. It is only after the injection of a contrast medium that the blood vessels become visible.

Tasks

- 1. Inject a 50% potassium iodide solution into the blood vessel model.
- 2. Observe the fluorescent screen of the X-ray basic unit to follow the course taken by the injected solution in the blood vessel model.

What you can learn about

- X-ray radiation
- Bremsstrahlung
- Characteristic radiation
- Law of absorption
- Mass absorption coefficient
- Contrast medium

Main articles

XR 4.0 expert unitX-ray unit, 35 kV	09057-99	1
XR 4.0 X-ray plug-in unit W tube	09057-80	1
XR 4.0 X-ray Blood vess.model f.contrast fluid	09058-06	1
XR 4.0 X-ray fluorescent screen	09057-26	1
XR 4.0 X-ray optical bench	09057-18	1
Slide mount for optical bench, h = 30 mm	08286-01	2
Table with stem	09824-00	1

Best fitting X-ray sets for this experiment:

XRE 4.0 X-ray expert set

09110-88

XRI 4.0 X-ray imaging upgrade set

09150-88

XR 4.0 Mobile X-ray Lab

Determination of length and position of an object which can notP2542001be seen

Pictures of the implant model projection in the y,z-plane.

Principle

This experiment provides training in determining the length and position of an object based on an X-ray image. A metal pin that is embedded in a wooden block is used as the model. This experiment is also an excellent preparatory exercise for demonstrating the principle of computed tomography.

Tasks

- 1. Record a bi-planar radiogram of two perpendicular planes of a metal pin which cannot be seen.
- 2. Determine the true length of the pin by taking into account the magnification factor which results from the divergence of the X-rays.
- 3. Determine the spatial position of the pin.

What you can learn about

- X-ray radiation
- Bremsstrahlung
- Characteristic radiation
- Law of absorption
- Mass absorption coefficient
- Stereographic projection

Main articles

XR 4.0 expert unitX-ray unit, 35 kV	09057-99	1
XR 4.0 X-ray plug-in unit W tube	09057-80	1
XR 4.0 X-ray fluorescent screen	09057-26	1
XR 4.0 X-ray optical bench	09057-18	1
XR 4.0 X-ray slide for external optical bench	09057-29	1
XR 4.0 X-ray Implant model	09058-07	1
XR 4.0 X-ray Adapter for digital camera 1/4""	09057-15	1

Best fitting X-ray sets for this experiment:

XRE 4.0 X-ray expert set

09110-88

XRI 4.0 X-ray imaging upgrade set

09150-88

XR 4.0 expert unit

12 Modern Imaging Methods 12.1 X-ray Imaging

P2540030 Qualitative examination of the absorption of X-rays

From left to right: aluminium, cardboard, iron (all of them: d=1 mm).

Principle

X-rays penetrate objects that are impenetrable for visible light. The absorption depends on the thickness and type of the material. This dependence is demonstrated in a qualitative manner on a fluorescent screen with the aid of various different absorption specimens.

Tasks

- 1. Observe the transmission of X-rays as a function of the material thickness.
- 2. Determine how the atomic number of the elements in a material affects the transmission of X-rays.

What you can learn about

- X-ray tube; Absorption of X-rays; Atomic number
- Fluorescence; Lambert-Beer

Main articles

XR 4.0 expert unitX-ray unit, 35 kV	09057-99	1
XR 4.0 X-ray plug-in unit W tube	09057-80	1
XR 4.0 X-ray fluorescent screen	09057-26	1
XR 4.0 X-ray optical bench	09057-18	1
Slide mount for optical bench, h = 30 mm	08286-01	2
Table with stem	09824-00	1

Best fitting X-ray set for this experiment:

XRE 4.0 X-ray expert set

09110-88

XR 4.0 X-ray plug-in unit W tube

Function and Applications

Factory adjusted tungsten tube in sheet steel housing ready for use in connection with XR 4.0 expert unit. Housing with plugs to accept the tubes operating quantities from the basic unit. With handle, mechanical lock and two switching pins, which only operate correspondingly security microswitches of the basic unit when the plug-in module is correcly inserted.

Benefits

Tube XChange Technology:

 Quick-change technology for four different X-ray tubes (W, Cu, Mo, and Fe), adjustment free,Complete protection against touching hot parts

Equipment and technical data

- Anode angle 19°, Max. operation datas 1 mA/35 kV
- Test voltage 50 kV, Mass 4.3 kg
- Dimensions(26.7 x 18.8 x 20.3) cm, Incl. dust protection cover.

Absorption of X-rays

P2541101

Absorption edge of copper; $U_A = 25 \text{ kV}$; $\lambda K = 138 \text{ pm}$.

Principle

The polychromatic X-radiation that is emitted by an X-ray tube is filtered in terms of its energy with the aid of a monocrystal. The resulting monochromatic radiation is used as the primary radiation source for examining the absorption behaviour of various metal foils of different thicknesses.

Tasks

- 1. Determine the attenuation of the X-radiation by aluminium and zinc foils of different thicknesses and at two different wavelengths of the primary radiation.
- 2. Determine the mass absorption coefficient μ/ρ for aluminium, zinc and tin absorbers of constant thickness as a function of the wavelength of the primary radiation. Prove the validity of $\mu/\rho = f(\lambda^3)$ in a graphical manner.
- 3. Determine the absorption coefficients μ for copper and nickel as a function of the wavelength of the primary radiation. Determine the energy values of the corresponding \mathscr{K} shells based on the graphical representation. Prove the validity of $\mu/\rho = f(\lambda^3)$.

What you can learn about

- Bremsstrahlung; Characteristic radiation
- Bragg scattering; Law of absorption
- Mass absorption coefficient; Absorption edge
- Half value thickness; Photoelectric effect
- Compton scattering; Pair production

Main articles

XR 4.0 expert unit	09057-99	1
XR 4.0 X-ray goniometer	09057-10	1
XR 4.0 X-ray Plug-in Cu tube	09057-50	1
XR 4.0 Software measure X-ray	14414-61	1
Geiger-Mueller Counter tube, type B	09005-00	1

Best fitting X-ray sets for this experiment:

XRE 4.0 X-ray expert set

09110-88

XRP 4.0 X-ray Solid state physics upgrade set

09120-88

XR 4.0 X-ray goniometer

Function and Applications

Goniometer with two independent stepper motors for the precise angular positioning of a sample and detector.

12 Modern Imaging Methods 12.1 X-ray Imaging

P2541801 X-ray dosimetry

NEW

Ionisation current I_C as a function of the capacitor voltage U_C for different diaphragm tubes.

Principle

Dosimetry, as a subspecialty of medical physics, deals with the determination and calculation of dose rates, which is also of great importance in view of the radiation protection directives. This experiment demonstrates the principle of measurement and it explains the various units of absorbed dose, equivalent dose, and absorbed dose rate. Inside a plate capacitor, an air volume is irradiated with X-rays. The resulting ion current is used to determine the dosimetric data.

Tasks

- 1. Using the two different diaphragm tubes and the fluorescent screen, the given distance between the aperture and the radiation source at maximum anode voltage and current is to be determined.
- 2. The ion current at maximum anode voltage is to be measured and graphically recorded as a function of the capacitor voltage by using two different beam limiting apertures. The ion dose rate and the energy dose rate are to be determined from the saturation current values.
- Using the d = 5 mm aperture, the ion current is to be determined and graphically recorded at various anode currents but with maximum anode and capacitor voltages.
- The ion current is to be measured and graphically recorded as a function of the capacitor voltage at different anode voltages and the corresponding saturation currents plotted graphically.

What you can learn about

- X-rays
- Absorption inverse square law
- Ionizing energy
- Energy dose
- Equivalent dose and ion dose and their rates
- *Q* factor
- Local ion dose rate
- Dosimeter

Main articles

XR 4.0 expert unitX-ray unit, 35 kV	09057-99	1
XR 4.0 X-ray plug-in unit W tube	09057-80	1
DC measuring amplifier	13620-93	1
Power supply, 0600 VDC	13672-93	1
XR 4.0 X-ray fluorescent screen	09057-26	1
XR 4.0 X-ray optical bench	09057-18	1
XR 4.0 X-ray Capacitor plates f.x-ray-unit	09058-05	1

Related X-ray Experiment

Ionizing effect of X-radiation

P2540040

Best fitting X-ray sets for this experiment:

XRE 4.0 X-ray expert set

09110-88

XRD 4.0 X-ray dosimetry upgrade set

09170-88

HYWE excellence in science

Fundamental principles of Nuclear Magnetic Resonance (NMR)

P5942100

Spin echo signal of an oil sample occuring 10 ms (echo time) after a 90° HF pulse (FID signal is shown). To generate the echo signal a 180° HF pulse has to be switched after half the echo time.

Principle

The basic principles concerning the phenomenon of nuclear magnetic resonance (NMR) are demonstrated. Experiments are executed with a MRT training device giving the opportunity to investigate some small probes in the sample chamber. Device control is done with the provided software. Investigations comprise the tuning of the system frequency to the Larmor frequency, the determination of the flip angle of the magnetization vector, the effects of the substance quantity, the influence of particular magnetic field inhomogeneities, the measurement of a spin echo signal and an averaging procedure to maximize the signal-to-noise ratio. The adjustment of all parameters in these experiments are inevitable to obtain an adequate MR image.

Tasks

- 1. Tuning of the system frequency to the Larmor frequency.
- 2. Setting of the HF (High Frequency) pulse duration to determine the flip angle of the magnetization vector.
- 3. Effects of the substance quantity on the FID signal (Free Induction Decay) amplitude.
- 4. Minimizing magnetic field inhomogeneities via a superimposed magnetic field (shim).
- Retrieving a relaxated FID signal via a spin echo flipping nuclear spins by 180°.
- 6. Improving the signal-to-noise ratio (SNR) of the FID signal.

What cou can learn about

- Nuclear spins
- Atomic nuclei with a magnetic moment
- Precession of nuclear spins; Magnetization
- Resonance condition, MR frequency
- MR flip angle, FID signal (Free Induction Decay), Spin echo
- Relaxation times (T1: longitudinal magnetization, T2: transverse magnetization)
- Signal-to-noise ratio

Main articles

Compact magnetic resonance tomograph (MRT)

09500-99 1

Related Experiments

Magnetic Resonance Imaging (MRI) I

P5942400

Relaxation times in Nuclear Magnetic Resonance

P5942200

Spatial encoding in Nuclear Magnetic Resonance

P5942300

Training recommended

Service PHYWE

For this experiment we recommend a seminar on equipment technology, handling and information of equipment-specific characteristics on site.

12 Modern Imaging Methods

12.2 Magnetic Resonance Imaging

Function and Applications

The systems gives you the unique opportunity of offering training at a real MRT machine directly on site. This is the only way to provide for realistic and practice-oriented nuclear magnetic resonance (NMR) training for all fields of science and medicine. The training software makes it easy for the users to experience all aspects of magnetic resonance tomography. The special option to influence experiments on runtime and to directly visualize the results gives users an unprecedented learning experience. In addition to parameters accessible only through MRT, as for example the tuning of the system frequency to the Larmor frequency or the specification of relaxation times, high-resolution tomographic MR images can be produced. Image artifacts found in clinical MRT can be examined directly in a simple process.

The system differs from other magnetic resonance tomographs only in the sample size and the fact that it is portable. However, in order to generate a fairly homogeneous magnetic field the sample chamber has to be comparatively small. The MRT compact set consists of the control unit, the magnet unit, and the training software and is optimized for education and training purposes. In addition to carrying out fundamental and basic experiments on MR technology, students can generate, export and analyze numerous images with all relevant contrasts in a high spatial resolution.

Benefits

- easy to connect and immediately operative (USB 2.0)
- new and numerous education experience
 - training at a real MRT in compact format with clinically relevant measuring procedures; high resolution MR imaging (2D, 3D)
 - live visualization of data; realtime control of experimental parameters
- realistic and practice-oriented training for all fields of science and medicine
 - T1/T2 measurements; all MR parameters accessible
 - experiment is selected from a clearly structured menu
 - measure a multitude of samples with a diameter up to one centimeter
 - software perfectly adapts to the operation for study purposes
 - suitable for a wide range of experiments, from basic understanding of magnetic resonance to complex imaging
- literature tailored precisely to the experiments (available with the set "compact magnetic resonance tomograph": 4 TESS experimental units
- possibility to select courses in which only the relevant parameters necessary for the findings are adjusted

Equipment and technical Data

The system includes the following components:

- Control unit:
 - gradient amplifier and transmitter and receiver unit

- PC connection: USB-B; Connection of the imaging unit (gradient): RJ45; Connection of the receiver/transmitter unit: BNC; Power supply: 12 V DC, 2 A; Power supply unit (external): 100-240 VAC, 50/60 Hz, 2 A
- Dimensions (length x width x height):27 cm x 9.5 cm x 14 cm; Weight: 2.3 kg
- Magnet unit:
 - high-end gradient system for 2D and 3D images; System frequency: 22 MHz
 - Field intensity: 500 mT; Field homogenity: < 100 ppm
 - Sample diameter: max. 10 mm
 - Connection of the imaging unit (gradient): RJ45
 - Connection of the receiver/transmitter unit BNC
 - Dimensions (length x width x height): 27 cm x 25 cm x 14 cm; Weight: 17.5 kg
- Training Software:
 - Languages: German/English (other languages on request)
 - Product license: Training version; Data formats: DICOM, JPEG, CSV, TXT; Media types: USB stick
- Sample set
 - 5 different samples (water and oil samples each of with 5 and 10 mm diameter, sample with a particular structure)
 - 1 empty sample tube, 10 mm
 - Sturdy carrying case for safe transport
 - USB stick incl. training software, comprehensive descriptions of the experiments, detailed theoretical background, structured implementation plan, exercises, analyses with many figures clearly arranged (possibility to extend the basic set), operating manuals

Accessories

- Computer (min. processor 1.6 GHz) with Windows XP (32-Bit)/Vista (32-Bit)/7, USB 2.0 interface, min. 1 GB RAM, min. of 1 GB hard-disk space, 1024 x 758 graphics card (min. 256 MB, compatible with DirectX 9.0), 16-bit color resolution or better
- Soundbox for realistic background noise to connect the experiments with everyday experiences

09500-99

Cross-sectional image of a branch

E excellence in science

Ultrasonic computertomography

P5161200

Input of the CT-scan parameters.

Principle

This experiment explains the fundamental principles of the image formation with a CT algorithm. A simple test object is used to create an attenuation tomogram and a time-of-flight tomogram followed by a discussion of the respective differences.

Tasks

- 1. Creation of several attenuation and time-of-flight tomograms
- 2. Variation of the device parameters
- 3. Discussion of the differences

What you can learn about

- Ultrasonic echography (A-scan)
- Tomography
- Resolution

Main articles

Basic Set Ultrasonic echoscope	13921-99	1
Extension Set: CT Scanner	13922-99	1
Ultrasonic probe 2 MHz	13921-05	1

Extension Set: CT Scanner

Function and Applications

This set is an extension to the ultrasonic pulse echo methods, including automated imaging methods like CT and B mode. With this set the development of a CT image can be demonstrated step by step. Automated B-scan images can be made with this set as well. The scanned objects can be measured and evaluated in axial and lateral direction. The results of the automated measurements with scanner have a much better quality, especially with the imaging methods.

Benefits

For a rather low invest, compared to real life systems, the advantages of mechanical scanning can be demonstrated in a very comprehensible way.

Equipment and technical data

- 1x CT scanner
- 1x CT control unit with tomography software
- 1x Water tank
- 1x CT sample

12 Modern Imaging Methods 12.3 Ultrasonic Imaging

P5160200 Ultrasonic echography (A-Scan)

Illustration of the effects of the amplifier or booster settings on the diagram.

Principle

An ultrasonic wave transmitted in a sample will be reflected at discontinuities (defects, cracks). From the relationship between the time of flight of the reflected wave and the sound velocity, the distance between ultrasonic transducer and defects(reflector) can be calculated. Position and size of these defects can be determined by measuring in different directions.

Tasks

- 1. Measure the longest side of the block with the calliper and the time of light of ultrasound wave for this distance with the 2 MHz probe
- 2. Calculate the sound velocity.
- Measure the position and the size of the different defects of the test block with the calliper and the ultrasound echography method.

What you can learn about

- Propagation of ultrasonic waves; Time of flight; Echo amplitude
- Reflection coefficient; A-scan; Flaw detection
- Non destructive testing (NDT); Ultrasonic transceiver

Main articles		
Basic Set Ultrasonic echoscope	13921-99	1
Vernier caliper	03010-00	1

Related Experiment

[deleted] Ultrasonic echography (B-Scan)

P5160300

Function and Applications

With the ultrasonic echoscope the basics of ultrasound and its wave characteristics can be demonstrated. Terms like amplitude, frequency, sound velocity or Time Gain Control TGC will be explained.

The cylinder set can be used to vividly demonstrate reflection as well as sound velocity and frequency depending on attenuation in solid state materials.

The knowledge e.g. regarding sound velocity will be used to measure the test block.

The principles of image formation from A-scan to B-scan can be explained. With the different probes the frequency depending resolution can be evaluated.

Doppler sonography

P5950100

Typical Doppler signal measured with PHYWE measure Ultra Flow software.

Principle

This set-up shows how blood flow studies are performed using Doppler ultrasound (Doppler sonograph). On a realistic arm dummy, the differences between continuous (venous) and pulsating (arterial) flow are shown as well as the difference in flow through a normal blood vessel and a stenosis.

Tasks

- 1. Analyse blood flow and search positive and negative flow components. Explain the differences.
- 2. Locate the built-in stenosis and compare the spectral distribution upstream and downstream of the stenosis.
- 3. Examine and compare the three pulse modes of the pump.

What you can learn about

- Venous flow
- Arterial flow
- Stenosis
- Blood flow velocity tracings
- Frequency shift
- Doppler effect
- Doppler angle
- Doppler sonography
- **Colour Doppler** Continuity equation

Main articles

Basic set: Ultrasonic Doppler technique	13923-99	1
Extension Set: medical Doppler Sonography	13923-02	1

Basic set: Ultrasonic Doppler technique

Function and Applications

Kit containing instrument and accessories for general ultrasonic sonography experiences. The software displays the measured data from the ultrasonic doppler apparatus, basic instrument of this kit, in realtime on the computer screen. Modular and extendable with accessory kits for experimentations in the fields of hydraulics and medical diagnostics.

Benefits

- This kit forms a very didactic experimentation system beginning from the basics of sonography and can with accessory kits be extended for the use in specific applications as hydraulics and medical diagnostics (only for training purposes!)
- an experimentation manual is included

12 Modern Imaging Methods 12.3 Ultrasonic Imaging

P5950200 Ultrasonic Time Motion Mode

Time Motion-mode, slow heart (pump) rate.

Principle

Using a simple heart model, the wall motion is recorded with the ultrasonic time motion method (M-mode or also TM-mode). The heart rate and the cardiac output (CO) are determined from the recorded TM-mode curve.

Tasks

- Simulate with heart model, the cardiac wall motion and record a time motion-image
- On basis of the time-motion image, determine the cardiac output and heart rate parameters.

What you can learn about

- Pulse duration (DT)
- Heart rate
- End systolic diameter ESD
- End systolic volume ESV
- Cardiac output (CO)
- Heart wall motion
- Echocardiography
- Time-Motion-Mode
- Representation of motion sequences
- Ultrasonic echography

Main articles

Basic Set Ultrasonic echoscope	13921-99	1
Extension set: medical ultrasonic diagnostics	13921-04	1

Related Experiments

[deleted] Ultrasonic investigation with breast dummy

P5950300

[deleted] Ultrasonic investigation with eye dummy

P5950400

Basic methods in imaging of micro and nanostructures with atomic force microscopy (AFM)

P2538000

Topography of Microstructure (50 micrometer), CD Stamper (20 micrometer), Skin Cross-Section (60 micrometer), and SCA chip structure (40 micrometer) FLTR.

Principle

Approaching a sharp silicon tip mounted on a cantilever to a sample surface leads to an atomic scale interaction. The result is a bend of the cantilever which is detected by a laser. In static mode the resulting deflection is used to investigate the topography of the sample surface line-by-line using a feedback loop. In dynamic mode the cantilever is oscillated at fixed frequency resulting in a damped amplitude near the surface. The measurement parameters (setpoint, feedback gain,...) play a crucial role for image quality. The dependence on the imaging quality is investigated for different nano structured samples.

Tasks

- 1. Set-up the microscope and start up the software. Mount a cantilever (with tip) and approach the tip towards a sample.
- 2. Investigate the influence of the scanning parameters on the imaging quality and performance, e.g. PID gain, setpoint (force), vibrational amplitude, and scanning speed. Use both static and dynamic force mode.
- 3. Image 7 different samples (microstructures, carbon nano tubes, skin cross-section, bacteria, CD stamper, chip structure, glass beads) by optimizing the parameters respectively.

What you can learn about

- Atomic Force Microscopy (AFM)
- Lennard-Jones potential
- Imaging of nano structures
- Static Force Mode
- Dynamic Force Mode
- Feedback loop
- Force
- Vibrational amplitude

Main articles

Compact-Atomic Force Microscope (AFM)

09700-99 1

P2538400 Imaging of biological and medical micro and nanostructure with atomic force microscopy (AFM)

Topography of Skin Cross-Section (60 micrometer), Staphylococcus Bacteria (10 micrometer), Human hair (40 micrometer), and Butterfly Wing (10 micrometer) FLTR.

Principle

Dynamic Atomic Force Microscopy is used to image and visualise several biological samples at a sub micrometer scale. A collection of both pre-prepared and freshly prepared samples are investigated, e.g. bacteria, skin cross-section, human hair, butterfly wing, blood cells, and fly eye. With high resolution imaging the relation between small biological structures and their function can be identified and different treatments could be recognised at this scale. One example is the imaging of different skin layers showing dead and living epithelial layer, collagen layer, hair follicle and structures within it. Another example is the imaging of different regular lattice structures to clarify the colour effect of butterfly wings.

Tasks

1. Set up the microscope and start up the software. Mount a cantilever and approach the tip towards a sample.

2. Use pre-prepared samples and investigate their topography by optimising the imaging parameters. Discuss the relation between the imaged structures with their function.

- · Skin cross-section: different layers and their structures
- Staphylococcus bacteria: form, alignment and surface structure

3. Prepare different samples and investigate their topography by optimising the imaging parameters. Discuss the relation between the imaged structures with their function and treatment.

- · Blood cells: different form and structure, function
- Butterfly wing: different regular structures, interference of light and colour effect

• Fly eye: compound of many "eye" units, resolution, viewing angle, reaction time

• Human hair: treatment dependence of surface structure (coloured and non-coloured, wet and dry)

What you can learn about

- Atomic Force Microscopy
- Dynamic mode
- Feedback loop
- High resolution 3D imaging
- Nano Imaging of biological and medical samples
- Relation of structure and function
- Blood cells
- Butterfly wing
- Insect eye
- Bacteria
- Skin
- Human hair

Main articles		
Compact-Atomic Force Microscope (AFM)	09700-99	1
Sample support, 10 pcs, for Compact Scanning Tunneling Microscope and Atomic Force Microscope	09619-00	1

Compact AFM, Atomic Force Microscope

Function and Applications

Compact and easy to use atomic force microscope to visualize and image structures on the micro and nano meter scale. Developed for educational purposes in practical lab course and pre-research labs in physics, chemistry, life sciences and material sciences. Also suitable to determine material characteristics (e.g. stiffness, magnetization, charging, material and phase contrast) and for manipulation (e.g. lithography).

Benefits

- Out-of -the-box device with integrated damping plate and control unit underneath
- Complete set, incl. Sample Set, Cantilever, Tools and Consumables
- Tip Scanner AFM for standard cantilever
- Easy and safe cantilever exchange and use: Flip mechanism with automatic laser switch off,
- no laser alignement, mechanical stopper for longer lifetime of cantilevers
- Digital top view camera for easy positioning and side view lens for easy and fast approach
- Portable and compact: transportable, easy to install with a small footprint
- Easy to use: Ideal for nanotechnology education, preparing students for their work on high-level research devices, and outreach

Equipment and technical Data

- Scan head with integrated control-unit on vibration-isolated experimentation board: 21cm x 21cm x 18cm, USB 2.0 interface, 16 bit DA converter (XYZ), 16 bit AD converter (7 channels)
- Max scanning speed 60 ms/line, up to 2048x2048 data points
- Scan type (tip scanner): Linear low voltage electro magnetic
- Scan Range: 70 micro meter (1.1 nm resolution)
- Z-range: 14 micro meter (1.1 nm resolution); Z noise level (RMS): 0.6 / 0.5 nm (static / dynamic); Automatic approach: vertical, range 4.5 mm
- Sample: max. 13 mm in diameter, horizontal mount, LED illumination, Micrometer translation stage xy: min. +/- 5 mm
- Cantilever Aligment: automatic adjustment, alignment grooves from various suppliers; Camera system for top view: USB digital color, 3.1 M pixels
- Modes of operation: Static Force, Dynamic Force, Force Distance Spectroscopy, Amplitude Distance Spectroscopy
- Other modes (MFM,AFM, Phase contrast, lithography and advanced spectroscopy modes)

- available with upgrade options material and spectroscopy and manipulation
- User expandability (scripting) available (upgrade option); Set of 10 Cantilever, 6 samples, Toolset
- Software for measuring, manipulation, analysing and visualization, Handbook and Quick Installation Guide

Accessories

- Material upgrade (Art. 09701-00): Additional Operating Modes (Phase Contrast, EFM, MFM, Force
- Modulation, Spreading Resistance), set of samples and cantilevers
- Spectroscopy and Manipulation upgrade (Art. 09702-00): Additional Operating Modes (Advanced Spectroscopy, Lithography (scratching, oxidation), Manipulation (oxidation, cutting and moving/pushing of nanoparticles)), User expandability (Visual basic, LabView, etc.), set of cantilevers and samples
- Side View Camera System (available 2013), other samples

Staphylococcus Bacteria, 10 μm and Skin Cross-Section, 60 $\mu m.$

CD Stamper, 20 µm and Aluminum Foil, 60 µm.

PS/PMMA films: Topography and Phase Contrast, 3 µm.

12 Modern Imaging Methods 12.5 Literature

TESS expert Physics Handbook X-Ray Experiments

Article no. 01200-02

Experiments with X-rays and their use in physics, chemistry, biology, medicine, material science, and geology

Description

Comprehensive collection of reference experiments concerning the fundamental principles and use of X-rays in physics, chemistry, biology, medicine, material science, and geology with the XR 4.0 X-ray unit platform as a pool of ideas concerning the potential areas of application in demonstration and laboratory experiments.

A clear matrix simplifies the orientation in terms of scientific fields and topics.

Topics

- Characteristic X-radiation / atomic structure / quantum physics
 and chemistry
- X-ray absorption, Compton scattering, Dosimetry
- Crystal structures/structural analysis with X-rays/Debye-Scherrer experiments (counting tube goniometer)
- Transirradiation experiments/non-destructive testing

Features

- Experiment descriptions with clearly structured learning objectives, fundamental principles, photo of the set-up, equipment list, tasks, illustrated instructions concerning the set-up and procedure, theory and evaluation with example results plus important notes concerning the operation and safety of the equipment.
- This simplifies the orientation and execution as well as the selection of the experiment parts for personalised laboratory experiments.

The information provided is so comprehensive that no other background information is required.

- For every experiment, the software package "XRM 4.0 measure X-ray" includes presettings for the easy and direct execution of the experiment at the push of a button as well as numerous example measurements.
- Experiment matrix for quick orientation
- Operating instructions concerning the components of the XR 4.0 platform including detailed information
- DIN A4 format, spiral-bound

Colour print

This documentation contains the following experiments:

Counter tube characteristics **P2540010**

Radiographic examination of objects

P2540020

Qualitative examination of the absorption of X-rays P2540030

Ionizing effect of X-radiation **P2540040**

Characteristic X-rays of copper **P2540101**

Characteristic X-rays of iron

P2540301

The intensity of characteristic X-rays as a function of the anode current and anode voltage

P2540401

K alpha doublet splitting of iron X-rays / fine structure **P2540801**

Duane-Hunt displacement law and Planck's "quantum of action" **P2540901**

Characteristic X-ray lines of different anode materials / Moseley's law

P2541001

Absorption of X-rays **P2541101**

K and L absorption edges of X-rays / Moseley's law and the Rydberg constant

P2541201

Examination of the structure of NaCl monocrystals with dif-ferent orientations

P2541301

Complete experiment list see www.phywe.com

P2541801 - X-ray dosimetry - page 137

Laboratory Experiments Application of ultrasounds in medicine, material sciences and industry

Article no. 01232-02

Description

19 detailed experiment guides.

Topics

- medical diagnostics
 - echography / mammosonography
 - echography / ultra sonic biometry
 - echo-cardiography
 - Doppler-sonography
 - ultrasonic computerized tomography (CT)
- material sciences / physics
 - A-scan, B-scan
 - velocity and attenuation of ultrasound in solid state material
 - Shear waves
 - Focus zone, resolution power
 - non-destructive testing (NDT) (Detection of discontinuities, angle beam measurement, Time of flight diffraction (TOFD))
 - mechanical scan methods, ultrasonic computerized tomography (CT)
- fluid dynamics
 - Laws of flow, flow measurements
 - Level measurement

Features

- Experimental guides with clearly structured learning objectives, fundamental principles, photo of the set-up, equipment list, tasks, illustrated instructions concerning the set-up and procedure, theory and evaluation with example results plus important notes concerning the operation and safety of the equipment. In most cases no other background information is required.
- DIN A4 format, spiral-bound, colour print, 200 pages
- incl. operating manuals
- Experiment guides in English

01232-02

Laboratory Experiments Magnetic Resonace Tomography (MRT)

Article no. 01233-02

Description

Comprehensive collection of experiments ragarding the magnetic resonance (MR) technology. The manual comprises basic experiments of the MR physics as well as experiments on complex MR imaging (2D and 3D). Experiments are didactically and precisely prepared and convey all relevant information about magnetic resonance tomography. Through questions, answers, evaluations and a comprehensive theory students are guided and are able to learn one of the most important procedures of medical diagnostics with a lot of fun and enjoyment. The software needed to perform the experiments perfectly fits the experimental literature and thus enables an unique learning and teaching experience. For example parameters can be directly varied during a measurement ("on runtime").

The manual is suitable for almost all fields of science. However, basically it is aimed at students with a deep medical background.

Topics

The manual consist of five TESS expert experimental units (P5942100-P5942500). Each unit consists of a multiude of single experiments an covers a very specific topic of MR physics and MR diagnostics.

- Basic principles in nuclear magentic resonance (NMR)
- Relaxation times in nuclear magnetic resonance
- Spatial encoding in nuclear magnetic resonance
- Magnetic resonance imaging I (Spin Echo 2D, Flash 2D)
- Magnetic resonance imaging II (Localized Spin Echo 2D and 3D)

Features

 Experimental descriptions with a clear division in related topics, principle, equipment, set-up, questions, tasks, illustrated implementation related to the tasks, theory with many coloured figures and all necessary contents to process the questions and tasks, evaluation with exemplatory results, and important notes for operation and safety.

Indices

14.1	Numerical index	146
14.2	Alphabetical index	147
	•	

14 Indices 14.1 Numerical index

Art no.	Description	Page
P0892300	Paper chromatography of chloroplast pigments	54
P0898200	[deleted] Spectroscopic identification of	58
P0911700	[deleted] Humidity preferendum of soil	67
P0938300	[deleted] Agonistic behaviour in male	50
P0938400 P1034700	[deleted] Shooling behaviour in fish Absorption of minerals by plants	50
P1056600	Learned behaviour in fish	50
P1135700	Osmosis - dependence of the osmotic	56
P1313600	Fermentation of molasse to ethanol with yeast	110
P1313700	[deleted] Microbial synthesis of ethanol	111
P1313800	[deleted] Production of amino acids by	112
P1313900	[deleted] Immobilised cells in the	115
P1441201	Chloroplasts in moss leaves	24
P1441301	Chromoplasts	24
P1441401	Nucleus and chromosomes	24
P1442101	Cross-section of a coniter (gymnosperm) leaf	25
P1442301 P1442601	Starch as a nutritional reserve substance	25
P1443101	Blood cells	26
P1443201	Kidney	26
P1443301	Liver cells (hepatocytes)	26
P1443701	Planaria	29
P1445801 P1445801	Rrine shrimp (Artemisia salina)	29
P1444201	The spore capsules of ferns	30
P1444301	Mould fungi growing on food	31
P1444501	Colony-forming ciliates in an aquarium	31
P1444901	Bacteria	31
P1521003	Solipity of soils and plant substrates	42
P1522160	We investigate our physical fitness - the	76
P1522260	Measuring reading skills with Cobra4	49
P2538000	[deleted] Basic methods in imaging of	27,100
P2538400	Imaging of biological and medical micro	27,100
P2540020	Radiographic examination of objects	123
P2540050	Absorption of X-rays	120
P2541801	X-ray dosimetry	128
P2541901	Contrast medium experiment with a blood	124
P2542001	Determination of length and position of	125
P2550100	Computed tomography	119
P4010111	Recording of nerve and muscle potentials	64,107
P4010211	Recording of nerve and muscle potentials	64, 107
P4010311	Recording of nerve potentials after the	65, 107
P4010462	Model experiment illustrating the	65,102
P4010511	Neurosimulator: membrane time constant	104
P4010560	[deleted] Neurosimulator: membrane time	104
P4010611 P4010711	Neurobiology: the nerve cell with Cobra3	104
P4010760	[deleted] Neurobiology: the nerve cell	105
P4010811	Neurobiology: nerve cell interactions	105
P4010860	[deleted] Neurobiology: nerve cell	105
P4010911	Neurobiology: neural networks	106
P4010960 P4011011	Latereted Neuropiology: neural networks	106
P4020160	Human electrocardiography (ECG) with Cobra4	72
P4020211	[deleted] Phonocardiography: Cardiac and	77
P4020260	Phonocardiography: Cardiac and vascular	77
P4020360	Blood pressure measurement with Cobra4	73
P4020460	Lhanges in the blood flow during smoking	74
P4030211	Muscle stretch reflex and determination	80
P4030260	[deleted] Muscle stretch reflex and	80
P4040101	Human merging frequency and upper hearing	81
P4040215	Hearing threshold and frequency	81
P4040311	[deleted] Acoustic orientation in space	82
P4040300	The effect of gravity and centrifugal	59
P4060200	Preferential temperature in insects	66
P4060360	Regulation of human body temperature with	86
P4070100	Optomotor response in insects	68
P4070200	Determination of the human visual field	83
P4070300	Test of human reaction capacity	87
P4070560	Human electrooculography (EOG) with Cobra4	85
P4070600	Additive colour mixing and colour masking	83
P4070760	Electronystagmography (ENG) with Cobra4	84
P4080300	Learning performance of humans	48
P4090100	Volumetric measurement of breathing in	88
P4100160	Comparison of the heat capacities of	34
P4100260	The Bergmann rule: heat loss as a	38
P4100360	Insulating effect of body coverage with	39
P4100460	24-hour weather observation with Cobra4	40
P4100560	Origin of acid rain with Cobra4	30
P4100840	The twenty-four-hour rhythm of an aquatic	37, 53
P4100860	The twenty-four-hour rhythm of an aquatic	37
P4100900	Microbial decomposition of mineral oil	97
P4110160	Photosynthesis (bubble counting method)	52
P4110360	Transpiration of leaves with Cobra4	55
P4110460	Glycolysis (pressure measurement) with Cobra4	60
P4110560	Glycolysis (temperature measurement) with	61

Art no.	Description	Page
P4110660	The importance of Carbon dioxide for	54
P4120140	[deleted] Determination of the	94
P4120160	[deleted] Determination of the	94
P4120260	Ionic permeability of the cell membrane	56,92
P4120360	Determination of the Michaelis constant	93
24120460	Substrate inhibition of enzymes with Lobra4	93
24120560	Enzyme innibition (poisoning of enzymes)	93
24140100	Fundamental microbiological working methods	90
24140300	Microscopy of hacteria	98
P4140400	Determination of the microbial count	99
P4140500	Evidence of the effect of antibiotics,	96
P5160200	[deleted] Ultrasonic echography (A-Scan)	132
P5160300	[deleted] Ultrasonic echography (B-Scan)	132
P5161200	[deleted] Ultrasonic computertomography	131
P5942100	Fundamental principles of Nuclear	129
25942200	Relaxation times in Nuclear Magnetic	129
25942300	Spatial encoding in Nuclear Magnetic	129
25942400	Magnetic Resonance Imaging (MRI) I	129
25950100	[deleted] Ultrasonic Time Motion Mode	73,133
25950200	[deleted] Illtrasonic investigation with	134
25950400	[deleted] Illtrasonic investigation with	70 134
P8001060	How much air can our lungs contain with	88
P8001160	Direct determination of lung volume from	88
P8001260	Does the lung volume depend on how tall	88
P8001360	Diagnosis of lung disease (FEV) with Cobra4	89
01200-02	TESS expert Physics Handbook X-Ray	138
J1232-02	Laboratory Experiments Application of	139
JI233-02	Laboratory Experiments Magnetic Resonace	139
JIJJJ-02	Autoclavo with incort	02
)7157-93	large-scale display digital RS-232 port	57
)9057-10	XR 4.0 X-ray goniometer	127
09057-40	XR 4.0 X-ray Direct Digital Image Sensor	121
09057-42	XR 4.0 X-ray CT Z-rotation stage (XRStage)	121
09057-48	XR 4.0 Mobile X-ray Lab	124
09057-80	XR 4.0 X-ray plug-in unit W tube	126
09057-99	[deleted] XR 4.0 expert unit	125
09110-88	XRE 4.0 X-ray expert set	119, 120
09120-88	XRP 4.0 X-ray Solid state physics upgrade set	127
J9150-88	XRI 4.0 X-ray imaging upgrade set	124, 125
J9170-88	VPCT 4.0 X-ray Computed Tomography	110 120
19500-99	Compact MRT	130
09700-99	Compact AFM, Atomic Force Microscope	28.137
12610-00	Cobra4 USB-Link	85, 103
12623-88	Cobra4 Display-Connect	41
12638-00	Cobra4 Sensor-Unit Thermodynamics,	55
12670-00	Cobra4 Sensor-Unit Weather	40
12673-12	TESS advanced Biology manual Cobra4	90
126/3-89	IESS advanced Applied Sciences set	90
13290-02	Chamicals set for TESS Microscopy	32
13443-00	TESS advanced Microscopy MIC necessary	20
13/1/-88	TESS advanced Microscopy MIC recessary	32
13505-93	Power supply 0-12 V DC/ 6 V 12 V AC 230 V	68 87
13615-03	Immersion probe NiCr-Ni, steel, -50,400 °C	61
13654-99	Digital Function Generator, USB	81
13921-04	Extension set: medical ultrasonic diagnostics	78
13921-99	Basic Set Ultrasonic echoscope	70,132
13922-99	Extension Set: CT Scanner	131
13923-99	Basic set: Ultrasonic Doppler technique	/5, 133
14421-61	XR 4.0 Software measure CI	121
15200 22	Software coolide - multi-user licence	00,79
15290-35	TESS advanced Biology set Microscopy	32
30346-00	Excursion set, soil analysis	45
30834-77	Ecology case, biological water analysis	43
30836-77	TESS Applied Sciences set examination of soil	45
30837-77	TESS Biology set chemo-physical water testing	43
30838-77	[deleted] TESS Applied Sciences Set Gas	44
30839-00	Reagent case for water analysis with	44
35600-99	Spectrophotometer S800, 330800 nm	111
36499-93	[deleted] Motor.piston burette,univer.50ml	94
+5510-00	nH-electrode plastic body gol BNC	37
530202-12	SWIET student microscope M36010	24
53021-99	SWIFT student microscope M3602C-3	98
54203-02	[deleted] Humidity determination	67
54906-00	Diaphragm filter apparatus	99
55961-93	Biological amplifier	80
55973-93	Centrifuge w. angle rotor 8x15 ml	114
55975-01	Artificial head w/o microphones	82
5976-00	Strobe drum	59,84
5977-00	Ussing chamber	102
55981-20	Lartnworm experiment chamber	65
22008-00	Respirometer complete assembly	69
55999-00	Rubble bioreactor	113
56000-00	Bioreactor. 1 I. 7 connections	112
[deleted] Hum	idity determination apparatus in	67
---	---	---
[deleted] Moto	r.piston burette,univer.50ml	94
[deleted] TESS	Applied Sciences Set Gas examination	44
[deleted] XK 4.	U expert unit	125
Α		
A-mode		70, 134
A-scan		132
Absorption inv	erse square law	128
Absorption of A	K-Tays	123, 120
Achilles tendor	n	80
Acid rain		36
Acidic anions		94
Acidification o	f soil and water	36
Acidity		41, 57
Actuality of solls	ag thrasholds	42
Acoustic nrobe		82
Action potentia	als	104
Additive colour	r mixing	83
AFM		27, 28, 100, 135
Algorithms		119
Amino acids	on of musclos	65 107
Analysis of driv	nking water	99
Animal blood	INITE WATCH	26
Anthropogenic	air pollution	36
Aquarium wate	er	35
Aquatic plant		37, 53
Artefacts		75 122
Artificial coll -	ambrane	75, 133 56, 92, 103
Artificial head		82
Artificial head	w/o microphones	82
Asymmetry pot	ential	65, 102
Atomic Force №	licroscope	27, 100, 135
Atomic Force M	licroscopy	27, 100, 136
Atomic nuclei	with a magnetic moment	129
Atomic numbe	I	72
Autoclave with	insett	96
AV nodes	- moere	72
Axon		106
_		
R		122
Bactoria		27 21 09 100
Bacterial cultu	TP	114
Bacterial leach	ling	113
D 1 11	0	0.4
Basic cations		94
Basic cations Basic set		125
Basic set Basic Set Ultra	sonic echoscope	94 125 70, 132
Basic cations Basic set Basic Set Ultras Basic set: Ultras	sonic echoscope sonic Doppler technique	94 125 70, 132 75, 133
Basic cations Basic set Basic Set Ultras Basic set: Ultra Beam hardenii Batlase appara	sonic echoscope Isonic Doppler technique 18 19	94 125 70, 132 75, 133 119 67
Basic cations Basic set Basic Set Ultras Basic set: Ultra Beam hardenii Berlese appara Biceps	sonic echoscope ssonic Doppler technique ng tus	94 125 70, 132 75, 133 119 67 79
Basic cations Basic set Basic Set Ultra Basic set: Ultra Beam hardenin Berlese appara Biceps Binding energy	sonic echoscope Isonic Doppler technique ng Itus	94 125 70, 132 75, 133 119 67 79 125, 127
Basic cations Basic set Basic Set Ultra: Beam hardenii Berlese appara Biceps Binding energy Biological amp	sonic echoscope ssonic Doppler technique ng tus / /	94 125 70, 132 75, 133 119 67 79 125, 127 80
Basic cations Basic set Basic set Ultra Basic set: Ultra Beam hardenin Berlese appara Biceps Binding energy Biological amp Biometry	sonic echoscope asonic Doppler technique ng tus / / lifier	94 125 70, 132 75, 133 119 67 79 125, 127 80 70, 134
Basic cations Basic set Basic set Ultra Basic set: Ultra Beam hardenin Berlese appara Biceps Binding energy Biological amp Biometry Bioreactor	sonic echoscope ssonic Doppler technique ng itus / / lifier	94 125 70, 132 75, 133 119 67 79 125, 127 80 70, 134 110
Basic cations Basic set Basic set Ultra: Basic set: Ultra Beam hardenii Berlese appara Biceps Binding energy Biological amp Biometry Bioreactor, 1 Bioreactor, 1	sonic echoscope ssonic Doppler technique ng itus / / lifier , 7 connections	94 125 70, 132 75, 133 119 67 79 125, 127 80 70, 134 110 112 (4, 197]
Basic cations Basic set Basic set Ultra: Basic set Ultra: Bear hardenii Berlese appara Biceps Binding energy Biological amp Biometry Bioreactor Bioreactor 1 Biphasic action Black macking	sonic echoscope ssonic Doppler technique ng tus / / lifier , 7 connections n potential	94 125 70, 132 75, 133 119 67 79 125, 127 80 70, 134 110 112 64, 107 83
Basic cations Basic set Basic set Basic set: Ultra: Beam hardenin Berlese appara Biological amp Biometry Bioreactor Bioreactor, 1 1 Biphasic action Black masking Biind soot	sonic echoscope ssonic Doppler technique ng itus / lifier , 7 connections n potential	94 125 70, 132 75, 133 119 67 79 125, 127 80 70, 134 110 112 64, 107 83 83
Basic cations Basic set Basic set Basic set: Ultra: Beam hardenin Berlese appara Biological amp Biological amp Biological amp Bioreactor Bioreactor, 1 Biphasic action Black masking Blind spot Bloch	sonic echoscope asonic Doppler technique ng itus / / lifier , 7 connections n potential	94 125 70, 132 75, 133 119 67 79 125, 127 80 70, 134 110 112 64, 107 83 83 130
Basic cations Basic set Basic set Basic set Basic set: Ultra: Beam hardenin Berlese appara Biological amp Biological amp Biological amp Bioreactor Bioreactor, 1 I Biphasic action Black masking Blind spot Bloch Bloch	sonic echoscope esonic Doppler technique ng itus / / lifier , 7 connections n potential	94 125 70, 132 75, 133 119 67 79 125, 127 80 70, 134 110 112 64, 107 83 83 130 26
Basic cations Basic set Basic set Basic set Basic set: Ultra: Beam hardenii Berlese appara Biological amp Bionetry Bioreactor Bioreactor Bioreactor Bioreactor, 1 I Biphasic action Black masking Blind spot Blood Blood Blood Cells	sonic echoscope esonic Doppler technique ng itus y lifier , 7 connections n potential	94 125 70, 132 75, 133 119 67 79 125, 127 80 70, 134 110 112 64, 107 83 83 130 26 27, 100, 136
Basic cations Basic set Basic set Basic set Basic set: Ultra: Beam hardenii Berlese appara Biological amp Bionding energy Biological amp Biometry Bioreactor Bioreactor, 11 Biphasic action Black masking Biond pot Blood Blood Cells Blood cells	sonic echoscope ssonic Doppler technique ng titus / lifier , 7 connections n potential	94 125 70, 132 75, 133 119 67 79 125, 127 80 70, 134 110 112 64, 107 83 83 130 26 27, 100, 136 26
Basic cations Basic set Basic set Basic set Basic set: Ultra: Basic set: Ultra: Basic set: Ultra: Biological amp Bionetry Bioreactor	sonic echoscope sonic Doppler technique ng ttus / / / / / / / / / / / / / / / / / / /	94 125 70, 132 75, 133 119 67 79 125, 127 80 70, 134 110 112 64, 107 83 130 26 27, 100, 136 26 74 75 133
Basic cations Basic set Basic set Basic set: Ultra: Beam hardenin Berlese appara Biological amp Biological amp Bioreactor, 1 I Biphasic action Black masking Bind spot Bloch Blocd Blocd Cells Blood flow dur Blood flow dur Blood flow dur	sonic echoscope sonic Doppler technique ng itus / / / fifier , 7 connections n potential cing smoking ocity tracings measurement	94 125 70, 132 75, 133 119 67 79 125, 127 80 70, 134 110 112 64, 107 83 83 130 26 27, 100, 136 26 74 75, 133 73
Basic cations Basic set Basic set Basic set: Ultra: Beam hardenin Berlese appara Biological amp Biological amp Bioteactor Bioteactor, 1 I Biphasic action Black masking Bind spot Blood Blood Cells Blood flow vel Blood flow vel Blood flow vel Blood flow vel Blood flow vel Blood flow vel Blood flow reters	sonic echoscope sonic Doppler technique ng itus / / / fifier , 7 connections n potential cing smoking ocity tracings measurement	94 125 70, 132 75, 133 119 67 79 125, 127 80 70, 134 110 112 64, 107 83 83 130 26 27, 100, 136 26 74 73 26
Basic cations Basic set Basic set Basic set Basic set: Ultra: Beam hardenii Berlese appara Biological amp Biometry Bioreactor Biorea	sonic echoscope ssonic Doppler technique ng titus / lifier , 7 connections n potential cing smoking ocity tracings : measurement : swes	94 125 70, 132 75, 133 119 67 79 125, 127 80 70, 134 110 112 64, 107 83 83 130 26 27, 100, 136 26 74 75, 133 73 26 73
Basic cations Basic set Basic set Basic set Basic set: Ultra: Beam hardenii Berlese appara Biological amp Bionetry Bioreactor Bioreactor Bioreactor, 11 Biphasic action Black masking Biond Spot Blood Blood Blood Blood Blood Cells Blood flow velu Blood flow velu Blood flow velu Blood proteins Blood proteins Blood sugar let	sonic echoscope sonic Doppler technique ng tus / lifier , 7 connections n potential cing smoking ocity tracings measurement aves vel	94 125 70, 132 75, 133 119 67 79 125, 127 80 70, 134 110 112 64, 107 83 83 130 26 27, 100, 136 26 74 75, 133 73 26
Basic cations Basic sets Basic sets Basic sets Basic sets: Ultra: Berlese appara Biological amp Biometry Bioreactor Biore	sonic echoscope sonic Doppler technique ng tius / / / / / / / / / / / / /	94 125 70, 132 75, 133 119 67 79 125, 127 80 70, 134 110 112 64, 107 83 130 26 27, 100, 136 26 74 75, 133 73 26 24, 25
Basic cations Basic set Basic set Basic set Basic set: Ultra: Beam hardenin Berlese appara Biological amp Biological amp Biometry Bioreactor Bioreactor, 1 1 Biphasic action Bioreactor, 1 1 Biphasic action Bioreactor, 1 1 Biphasic action Bioreactor, 1 1 Biphasic action Bioreactor, 1 1 Bioreactor, 1 1 B	sonic echoscope sonic Doppler technique ng itus / / / / / / / / / / / / /	94 125 70, 132 75, 133 119 67 79 125, 127 80 70, 134 110 64, 107 83 83 130 26 27, 100, 136 26 74 75, 133 73 26 73 26 24, 25 93 20
Basic cations Basic set Basic set Basic set Basic set: Ultra: Beam hardenii Berlese appara Biological amp Biometry Bioreactor Bioreactor Bioreactor Bioreactor Bioreactor Bioreactor Bioreactor Biotack masking Blood Blood Blood Cells Blood flow dur Blood flow dur Blood flow dur Blood flow dur Blood flow dur Blood pressure Blood proteins Blood sugar lei Blossoms Bodenstein pri Body coverage'a	sonic echoscope ssonic Doppler technique ng itus y lifier , 7 connections n potential cing smoking ocity tracings measurement aves yel inciple s ure regulation	94 125 70, 132 75, 133 119 67 79 125, 127 80 70, 134 110 112 64, 107 83 83 130 26 27, 100, 136 26 27, 100, 136 26 27, 100, 136 26 74 75, 133 73 26 24, 25 93 39 86
Basic cations Basic set Basic set Basic set Basic set: Ultra: Beam hardenii Berlese appara Biological amp Biometry Bioreactor Bioreactor, 1 Biphasic action Bioreactor, 1 Biphasic action Biphasic actio	sonic echoscope ssonic Doppler technique ng titus / lifier , 7 connections n potential ting smoking ocity tracings measurement sves vel inciple 's ture regulation	94 125 70, 132 75, 133 119 67 79 125, 127 80 70, 134 110 112 64, 107 83 83 130 26 27, 100, 136 26 27, 100, 136 26 74 75, 133 73 26 74 75, 133 73 26 24, 25 93 39 86 125
Basic cations Basic sets Basic sets Basic sets Basic sets Binding energy Biological amp Biometry Bioreactor Bi	sonic echoscope sonic Doppler technique ng itus / lifier , 7 connections n potential cing smoking ocity tracings measurement saves vel inciple 's ure regulation model	94 125 70, 132 75, 133 119 67 79 125, 127 80 70, 134 110 112 64, 107 83 130 26 27, 100, 136 26 27, 100, 136 26 27, 100, 136 26 27, 133 73 26 24, 25 93 39 86 125 127 25 127 26 24, 25 93 39 86 125 127 27 27 28 29 29 29 20 20 20 20 20 20 20 20 20 20
Basic cations Basic sets Basic sets Basic sets Basic sets: Ultra: Basic sets: Ultra: Binding energy Biological amp Biometry Bioreactor Bioreactor Bioreactor Bioreactor, 11 Biphasic action Bioreactor, 11 Biphasic action Bioreactor, 11 Bioreactor,	sonic echoscope sonic Doppler technique ng titus / lifier , 7 connections n potential ting smoking ocity tracings measurement aves vel inciple 's ture regulation model n	94 125 70, 132 75, 133 119 67 79 125, 127 80 70, 134 110 112 64, 107 83 130 26 71, 100, 136 26 74 75, 133 73 26 24, 25 93 39 86 125 127 127 127
Basic cations Basic set Basic set Basic set Basic set Basic set: Ultra: Beam hardenii Berlese appara Bioding energy Biological amp Biometry Bioreactor Bioreactor Bioreactor Bioreactor Bioreactor Bioreactor Bioreactor Bioreactor Biotack masking Blood Blood Blood Blood Cells Blood flow dul Blood gressure Blood sugar lev Blossoms Body coveraget Bohr model Bohr's atomic Bragg equation Breathing in reference	sonic echoscope ssonic Doppler technique ng itus y lifier , 7 connections n potential constructions n potential differ sequence inciple sequence n model n esting postion	94 125 70, 132 75, 133 119 67 79 125, 127 80 70, 134 110 112 64, 107 83 83 130 26 27, 100, 136 26 27, 100, 136 26 27, 100, 136 26 74 75, 133 73 26 74 75, 133 73 26 73 26 73 26 73 26 73 26 73 26 73 26 73 73 26 73 26 73 73 26 74 75, 133 73 26 73 26 73 26 73 26 73 26 73 26 73 26 73 26 73 26 73 26 73 73 26 73 73 73 73 73 73 73 73 73 73
Basic cations Basic set Basic set Basic set Basic set Basic set: Ultra: Beam hardenii Berlese appara Bioding energy Biological amp Biometry Bioreactor Biodo Cells Biood Cells Biood flow dur Biood pressure Biood pressure Biood sugar let Biodo sugar let Biostoms Body coverage Body temperat Bohr model Bohr's atomic Breathing in rr Bremsstrahlun	sonic echoscope sonic Doppler technique ng titus / lifier , 7 connections n potential cing smoking ocity tracings r measurement set vel inciple is ture regulation model n esting postion g	94 125 70, 132 75, 133 119 67 79 125, 127 80 70, 134 110 112 64, 107 83 83 130 26 27, 100, 136 26 27, 100, 136 26 74 75, 133 73 26 24, 25 93 39 86 125 127 127 127 127 127 127 127 127
Basic cations Basic set Basic set Basic set Basic set Basic set: Ultra: Beam hardenii Berlese appara Biological amp Biometry Biological amp Biometry Bioreactor Bioreactor Bioreactor, 1 Bioreactor, 1 Bioreactor, 1 Bioreactor Bioreactor, 1 Bioreactor, 1 Bioreactor Bioreactor, 1 Bioreactor, 1 Biore	sonic echoscope sonic Doppler technique ng titus / lifier , 7 connections n potential cing smoking ocity tracings measurement aves vel inciple 's ture regulation model n esting postion g	94 125 70, 132 75, 133 119 67 79 125, 127 80 70, 134 110 112 64, 107 83 83 130 26 27, 100, 136 26 27, 100, 136 26 74 75, 133 73 26 24, 25 93 39 86 125 127 127 127 127 127 127 127 127
Basic cations Basic sets Basic sets Basic sets Basic sets Binding energy Biological amp Biometry Bioreactor Bi	sonic echoscope sonic Doppler technique ng titus / lifier , 7 connections n potential cing smoking ocity tracings r measurement saves vel inciple 's ture regulation model n esting postion g ttor	94 125 70, 132 75, 133 119 67 79 125, 127 80 70, 134 110 112 64, 107 83 130 26 27, 100, 136 26 74 75, 133 73 26 24, 25 93 39 86 125 127 127 88 125 127 127 88 125 127 127 127 127 127 127 127 127
Basic cations Basic set Basic set Basic set Basic set Basic set: Ultra: Berlese appara Biological amp Biometry Bioreactor	sonic echoscope sonic Doppler technique ng titus / / / / / / / / / / / / /	94 125 70, 132 75, 133 119 67 79 125, 127 80 70, 134 110 112 64, 107 83 130 26 27, 100, 136 26 74 75, 133 73 26 24, 25 93 39 86 125 127 127 88 125 127 127 127 128 89 80 129 129 129 129 127 127 127 127 127 127 127 127
Basic cations Basic set Basic set Basic set Basic set Basic set: Ultra: Beam hardenii Berlese appara Biological amp Biometry Bioreactor Bioreactor Bioreactor Bioreactor Bioreactor Bioreactor Bioreactor Bioreactor Bioreactor Bioreactor Bioreactor Bioreactor Bioreactor Bioreactor Bioreactor Bioreactor Bioreactor Bioreactor Biod flow du Biood pressure Biood proteins Biood proteins Biood sugar lei Biossoms Biody temperat Body temperat Bohr model Bohr's atomic Breathing in rr Bremsstrahlun Brine shrimps Bubble bioread Butterfly Wing	sonic echoscope sonic Doppler technique ng itus y lifier , 7 connections n potential cing smoking ocity tracings measurement aves vel inciple 's sure regulation model n esting postion g ttor	94 125 70, 132 75, 133 119 67 79 125, 127 80 70, 134 110 112 64, 107 83 83 130 26 27, 100, 136 26 27, 100, 136 26 27, 100, 136 26 24, 25 93 39 86 125 127 127 127 127 127 127 29 113 27, 100, 136
Basic cations Basic set Basic set Basic set Basic set: Ultra: Beam hardenii Berlese appara Biological amp Biometry Bioreactor Bioreactor Bioreactor Bioreactor Bioreactor Bioreactor Bioreactor Biodo Cells Biodo Cells Biodo Cells Biodo flow dur Biodo flow dur Biodo flow dur Biodo proteins Biodo proteins Biodo proteins Bodenstein pri Body coveragel Body coveragel Body temperat Bohr model Bohr's atomic Breathing in ri Bremsstrahlun Brien shrimps C Capacitor	sonic echoscope sonic Doppler technique ng titus / lifier , 7 connections n potential ting smoking ocity tracings measurement aves vel inciple 's ture regulation model n esting postion g tor	94 125 70, 132 75, 133 119 67 79 125, 127 80 70, 134 110 112 64, 107 83 83 130 26 27, 100, 136 26 27, 100, 136 26 24, 25 93 39 86 125 127 127 127 88 124, 125 29 113 27, 100, 136
Basic cations Basic sets Basic sets Basic sets Basic sets Basic sets Binding energy Biological amp Biometry Bioreactor Bioreactor Bioreactor Bioreactor Bioreactor Bioreactor Bioreactor Bioreactor Bioreactor Bioreactor Biodo Biodo Biodo Biodo Biodo Biodo Biodo Cells Biodo flow dur Biodo flow dur Biodo flow dur Biodo flow dur Biodo flow dur Biodo proteins Biodo proteins Biodor proteins Biodr proteins Biodr proteins Biodr proteins Biodreacter Biodre	sonic echoscope sonic Doppler technique ng titus / lifier , 7 connections n potential ting smoking ocity tracings measurement aves vel inciple 's ure regulation model n esting postion g	94 125 70, 132 75, 133 119 67 79 125, 127 80 70, 134 110 112 64, 107 83 130 26 27, 100, 136 26 27, 100, 136 26 24, 25 93 39 86 125 127 127 127 127 127 128 25, 54
Basic cations Basic sets Basic sets Basic sets Basic sets Binding energy Biological amp Biometry Bioreactor Bioreactor Bioreactor Bioreactor Bioreactor Bioreactor Bioreactor Bioreactor Bioreactor Bioreactor Bioreactor Biod Cells Biood Cells Biood Cells Biood flow due Biood proteins Biod proteins Biod proteins Body coverage Body temperat Bohr's atomic Bremsstrahun Brine shrimps Bubtle bioreaca Butterfly Wing C Capacitor Carbon dioxide Carbon dioxide	sonic echoscope sonic Doppler technique ng ritus / / / / / / / / / / / / /	94 125 70, 132 75, 133 119 67 79 125, 127 80 70, 134 110 112 64, 107 83 130 26 27, 100, 136 26 74 75, 133 73 26 24, 25 93 39 86 125 127 127 127 127 127 127 127 127
Basic cations Basic set Basic set Basic set Basic set Basic set Basic set Biological amp Biometry Biological amp Biometry Bioreactor Bioreactor Bioreactor Bioreactor Bioreactor Bioreactor Bioreactor Bioreactor Bioreactor Bioreactor Bioreactor Bioreactor Bioreactor Bioreactor Bioreactor Bioreactor Bioreactor Bioreactor Bioreactor Biolod Biood Cells Biood flow dur Biood pressure Biood pressure Biood pressure Biody coverage Body temperate Bohr's atomic Brage equation Breathing in ri Breathing in ri Breathing in ri Breathing in ri Bubble bioread Butterfly Wing C Carbon dioxidé Carbon dioxidé Cardiac activiti	sonic echoscope sonic Doppler technique ng itus y lifier , 7 connections n potential cong smoking ocity tracings measurement aves vel inciple 's ture regulation model n esting postion g ctor	94 125 70, 132 75, 133 119 67 79 125, 127 80 70, 134 110 112 64, 107 83 83 83 130 26 27, 100, 136 26 27, 100, 136 26 27, 100, 136 26 74 75, 133 73 26 74 75, 133 73 26 24, 25 93 39 86 125 127 88 124, 125 93 39 86 125 127 88 124, 125 93 39 86 125 127 88 124, 125 93 39 86 125 127 88 124, 125 93 39 86 125 127 88 124, 125 99 113 27, 100, 136
Basic cations Basic set Basic set Basic set Basic set Basic set: Ultra: Beam hardenii Berlese appara Bioding energy Biological amp Biometry Bioreactor Bioreactor Bioreactor Bioreactor Bioreactor Bioreactor Bioreactor Bioreactor Bioreactor Bioreactor Bioreactor Bioreactor Bioreactor Bioreactor Bioreactor Biodo Cells Biood Cells Biood Cells Biood Cells Biood cells Biood pressure Biood pressure Biood pressure Biood sugar let Biodo gressure Biodo sugar let Biody coverage Body temperat Bohr model Bohr's atomic Braeathing in ri Breathing in r	sonic echoscope sonic Doppler technique ng titus / lifier , 7 connections n potential cing smoking ocity tracings r measurement ser reasurement set vel inciple is sure regulation model n esting postion g ctor (CO)	94 125 70, 132 75, 133 119 67 79 125, 127 80 70, 134 110 112 64, 107 83 83 130 26 27, 100, 136 26 27, 100, 136 26 74 75, 133 73 26 24, 25 93 39 86 125 127 127 127 127 127 127 127 127
Basic cations Basic sets Basic sets Basic sets Basic sets Basic sets Biological amp Bionding energy Biological amp Biometry Bioreactor Bioreactor Bioreactor Bioreactor Bioreactor Bioreactor Bioreactor Biodo Cells Biood Cells Biood Cells Biood Cells Biood flow velu Biood flow velu Biood proteins Biood proteins Biod proteins Biod proteins Biod proteins Biody coverage Body temperat Bohr model Bohr's atomic Breathing in ra Breathing in ra Breathing in ra Biotter y Wing C Capacitor Carbon dioxide Carbon dioxide Cardia cativith Cardiac output	sonic echoscope sonic Doppler technique ng titus / lifier , 7 connections n potential ting smoking ocity tracings measurement aves vel inciple 's ture regulation model n esting postion g ctor e consumption e consumption and production y (CO)	94 125 70, 132 75, 133 119 67 79 125, 127 80 70, 134 110 112 64, 107 83 83 130 26 27, 100, 136 26 74 75, 133 73 26 24, 25 93 39 86 125 127 127 127 127 127 127 128 124, 125 29 113 27, 100, 136 128 128 128 128 128 128 128 128
Basic cations Basic sets Basic sets Basic sets Basic sets Binding energy Biological amp Biometry Bioreactor Bioreactor Bioreactor Bioreactor Bioreactor Bioreactor Bioreactor Bioreactor Bioreactor Bioreactor Biod Cells Biood Cells Biood flow dul Biood flow dul Biood flow dul Biood flow dul Biood flow dul Biood flow dul Biood proteins Bod proteins Bodr proteins Bodr proteins Bodr sugar lev Biost staming Biotra atomic Breasthing in re Bremsstrahlun Birenstrinps Butherly Wing C Capacitor Carbon dioxide Carbon dioxide Carbon dioxide Carbon dioxide Cardia cutput Cell court	sonic echoscope sonic Doppler technique ng titus / lifier , 7 connections n potential consument aves rel inciple 's ure regulation model n esting postion g ctor (consumption end production y (CO)	94 125 70, 132 75, 133 119 67 79 125, 127 80 70, 134 110 112 64, 107 83 130 26 27, 100, 136 26 27, 100, 136 26 24, 25 93 39 86 125 127 127 127 127 128 25, 54 69 37, 53 76 78, 134 111 128 24 24 24 24 24 24

Cell organelles	24
Cellular respiration	54
Centrifugal force	11/
Characteristic radiation	125
Characteristic X-radiation	119, 120, 123, 124
Characteristic x-ray	126
Characteristic X-rays	124, 127
Chemicals set for TESS Microscopy(for up to 10	30
Chloren laste	88
Chromatin	25
Chromoplasts	24
Chromosomes	24
Ciliates	31
Cloudiness	40
CO2 pressure measurement	60
Coat of animals	39
Cobrad Sonsor-Unit Thormodynamics, prossure abs	41 55
Cobra4 Sensor-Unit Methodynamics, pressure abs	40
Cobra4 USB-Link	85, 103
Colour Doppler	75, 133
Colour saturation	83
Compact AFM, Atomic Force Microscope	28, 137
Compact MRI	130
Comparison between low and high threshold levels	105
Compensation vessel	69
Complementary colour	83
Compound action potentials	79
Compound eye	68
Compton	127
Computed temperaphy	119, 120, 123, 124
Concentration	56
Conduction velocity	64, 80, 107
Conduction velocity in median and lateral giant	64, 107
Conductivity	41, 57
Conductivity measurement	93
Conductivity of water samples	35
Conductivity-time plot	93
Contamination by inorganic calts	25
Continuity equation	75 133
Contracting tune	77
Contrast improve	105
Contrast medium	124
	07
Control loop	87
Control loop Cornea and retina distance	87 70, 134
Control loop Cornea and retina distance Course of luminosity Cross-section	87 70, 134 40 25
Control loop Cornea and retina distance Course of luminosity Cross-section Crustaceans	87 70, 134 40 25 29
Control loop Cornea and retina distance Course of luminosity Cross-section Crustaceans CT	87 70,134 40 25 29 119
Control loop Corree and retina distance Course of luminosity Cross-section Crustaceans CT CT CT table	87 70,134 40 25 29 119 121
Control loop Cornee and retina distance Course of luminosity Cross-section Crustaceans CT CT CT table	87 70, 134 40 25 29 119 121
Control loop Cornea and retina distance Course of luminosity Cross-section Crustaceans CT CT table Demons to forgets	87 70, 134 40 25 29 119 121
Control loop Cornea and retina distance Course of luminosity Cross-section Crustaceans CT CT table D Damage to forests Dark reaction	87 70, 134 40 25 29 119 121 36 37, 53
Control loop Cornea and retina distance Course of luminosity Cross-section Crustaceans CT CT table Damage to forests Dark reaction Davlight reaction	87 70, 134 40 25 29 119 121 36 37, 53 37, 53
Control loop Corree and retina distance Course of luminosity Cross-section Crustaceans CT CT table Damage to forests Dark reaction Daylight reaction Dead time	87 70, 134 40 25 29 119 121 36 37, 53 37, 53 37, 53 87
Control loop Cornee and retina distance Course of luminosity Cross-section Crustaceans CT CT table Damage to forests Dark reaction Daylight reaction Dead time Deciduous plant	87 70, 134 40 25 29 119 121 36 37, 53 37, 53 37, 53 87 25
Control loop Cornee and retina distance Course of luminosity Cross-section Crustaceans CT CT CT Datage to forests Dark reaction Daylight reaction Dead time Deciduous plant Delicate tubes	87 70, 134 40 25 29 119 121 36 37, 53 37, 53 37, 53 87 25 26
Control loop Cornea and retina distance Course of luminosity Crostaceans CT CT table D Damage to forests Dark reaction Dead time Deciduous plant Delicate tubes Demo advanced Biology Manual Cobra4 Biochemistry	87 70, 134 40 25 29 119 121 36 37, 53 37, 53 37, 53 87 25 26 62 22
Control loop Cornea and retina distance Course of luminosity Cross-section Crustaceans CT CT CT table Damage to forests Dark reaction Daylight reaction Dead time Deciduous plant Delicate tubes Demo advanced Biology Manual Cobra4 Biochemistry Dependence of photosynthesis on light and carbon	87 70, 134 40 25 29 119 121 36 37, 53 37, 53 87 25 26 62 52 105
Control loop Corree and retina distance Course of luminosity Cross-section Crustaceans CT CT table Damage to forests Dark reaction Daylight reaction Dead time Deciduous plant Delicate tubes Demo advanced Biology Manual Cobra4 Biochemistry Depondence of photosynthesis on light and carbon Depolarisation Dialvisis tube	87 70, 134 40 25 29 119 121 36 37, 53 37, 53 37, 53 87 25 26 62 52 20 62 52 105 56, 92, 103
Control loop Cornee and retina distance Course of luminosity Cross-section Crustaceans CT CT table Damage to forests Dark reaction Daylight reaction Dead time Deciduous plant Delicate tubes Demo advanced Biology Manual Cobra4 Biochemistry Dependence of photosynthesis on light and carbon Depolarisation Dialysis tube Diaphragm filter apparatus	87 70, 134 40 25 29 119 121 36 37, 53 37, 53 37, 53 87 25 26 62 52 105 56, 92, 103 99
Control loop Cornee and retina distance Course of luminosity Cross-section Crustaceans CT CT CT table Damage to forests Dark reaction Daylight reaction Dead time Deciduous plant Delicate tubes Demo advanced Biology Manual Cobra4 Biochemistry Dependence of photosynthesis on light and carbon Depolarisation Dialysis tube Diaphragm filter apparatus Diaphragm filter apparatus Diaphragmatic and thoracic respiration	87 70, 134 40 25 29 119 121 36 37, 53 37, 53 37, 53 87 25 26 62 52 105 56, 92, 103 99 88
Control loop Cornea and retina distance Course of luminosity Cross-section Crustaceans CT CT table Damage to forests Dark reaction Dead time Decide tubes Demo advanced Biology Manual Cobra4 Biochemistry Deploarte tubes Depolarisation Dialysis tube Diaphragm filter apparatus Diaphragmatic and thoracic respiration Diastole	87 70, 134 40 25 29 119 121 36 37, 53 37, 53 37, 53 87 25 26 62 52 105 56, 92, 103 99 88 77
Control loop Cornea and retina distance Course of luminosity Cross-section Crustaceans CT CT CT table D Damage to forests Dark reaction Daylight reaction Dead time Deciduous plant Delicate tubes Demo advanced Biology Manual Cobra4 Biochemistry Dependence of photosynthesis on light and carbon Depolarisation Dialysis tube Diaphragm filter apparatus Diaphragmatic and thoracic respiration Diastolic blood pressure	87 70, 134 40 25 29 119 121 36 37, 53 37, 53 87 25 26 62 52 105 56, 92, 103 99 88 77 73 73
Control loop Cornea and retina distance Course of luminosity Cross-section Crustaceans CT CT table D Damage to forests Dark reaction Daylight reaction Dead time Deciduous plant Delicate tubes Demo advanced Biology Manual Cobra4 Biochemistry Depondarkanced Biology Manual Cobra4 Biochemistry Depondavanced Biology Manual Cobra4 Biochemistry Depondarkanced Biology Manual Cobra4 Biochemistry Depondarkanced Biology Manual Cobra4 Biochemistry Depondarkanced Biology Manual Cobra4 Biochemistry Depolarisation Dialysis tube Diaphragmatic and thoracic respiration Diastole Diastole Diod pressure Diffusion potential	87 70, 134 40 25 29 119 121 36 37, 53 37, 53 37, 53 87 25 26 62 52 105 56, 92, 103 99 88 77 73 65, 102
Control loop Cornee and retina distance Course of luminosity Cross-section Crustaceans CT CT table D Damage to forests Dark reaction Dead time Deciduous plant Delicate tubes Demo advanced Biology Manual Cobra4 Biochemistry Dependence of photosynthesis on light and carbon Dependarisation Dialysis tube Diaphragm filter apparatus Diaphragmatic and thoracic respiration Diastole Diastole Distolic blood pressure Diffusion potential Digital Function Generator, USB	87 70, 134 40 25 29 119 121 36 37, 53 37, 53 37, 53 87 25 26 62 52 105 56, 92, 103 99 88 77 73 65, 102 81 124, 125
Control loop Cornea and retina distance Course of luminosity Cross-section Crustaceans Cr Cr table D Damage to forests Dark reaction Daylight reaction Dead time Decident ubes Deendence of photosynthesis on light and carbon Depolarisation Dialysis tube Diaphragm filter apparatus Diaphragm filter apparatus Diaphragmatic and thoracic respiration Diastole Diaptol pressure Diffusion potential Digital Function Generator, USB Digital imaging Diople	87 70, 134 40 25 29 119 121 36 37, 53 37, 53 37, 53 87 25 26 62 52 105 56, 92, 103 99 88 77 73 65, 102 81 124, 125 85
Control loop Cornea and retina distance Course of luminosity Tross-section Crustaceans CT CT CT table D Damage to forests Dark reaction Dead time Decide tubes Decide tubes Demo advanced Biology Manual Cobra4 Biochemistry Delicate tubes Demo advanced Biology Manual Cobra4 Biochemistry Dependence of photosynthesis on light and carbon Depolarisation Dialysis tube Diaphragm filter apparatus Diaphragm filter apparatus Diaphragm filter apparatus Diaphragm filter apparatus Diaphragm filter apparatus Diaptolic blood pressure Diffusion potential Digital Function Generator, USB Digital imaging Dipole Direct imaging sensor	87 70, 134 40 25 29 119 121 36 37, 53 37, 53 37, 53 87 25 26 62 52 105 56, 92, 103 99 88 77 73 65, 102 81 124, 125 85 121
Control loop Cornea and retina distance Course of luminosity Cross-section Crustaceans CT CT CT table D D Damage to forests Dark reaction Daylight reaction Dead time Deciduous plant Delicate tubes Demo advanced Biology Manual Cobra4 Biochemistry Dependence of photosynthesis on light and carbon Depolarisation Dialysis tube Diaphragm filter apparatus Diaphragm filter apparatus Diaphragmatic and thoracic respiration Distole Diastolic blood pressure Difiatal Function Generator, USB Digital imaging Dipole Direct imaging sensor Disinfection	87 70, 134 40 25 29 119 121 36 37, 53 37, 53 87 25 26 62 52 105 56, 92, 103 99 88 77 73 65, 102 81 124, 125 85 121 96, 97
Control loop Cornea and retina distance Course of luminosity Cross-section Crustaceans CT CT table D Damage to forests Dark reaction Daylight reaction Dead time Deciduous plant Delicate tubes Demo advanced Biology Manual Cobra4 Biochemistry Dependence of photosynthesis on light and carbon Depolarisation Dialysis tube Diaphragm filter apparatus Diaphragmatic and thoracic respiration Diatole Distole Distole Distole Distole Digital Function Generator, USB Digital imaging Dipole Disinfection Disinfection	87 70, 134 40 25 29 119 121 36 37, 53 37, 53 87 25 26 62 52 105 56, 92, 103 99 88 77 73 65, 102 81 124, 125 85 121 96, 97 37, 53
Control loop Cornea and retina distance Course of luminosity Crostaceans CT CT table D Damage to forests Dark reaction Daylight reaction Dead time Deciduous plant Delicate tubes Deeno advanced Biology Manual Cobra4 Biochemistry Dependence of photosynthesis on light and carbon Depolarisation Dialysis tube Diaphragm filter apparatus Diaphragm filter apparatus Diaphragm tilter apparatus Diaphragm tilter apparatus Diaphragm tilter apparatus Diaphragm filter apparatus Diaphragm filter apparatus Dialysis tube Diastolic blood pressure Diffusion potential Digital Function Generator, USB Digital imaging Dipole Direct imaging sensor Disinfection Diurnal thythm Doppler angle	87 70, 134 40 25 29 119 121 36 37, 53 37, 53 87 25 26 62 52 105 56, 92, 103 99 88 77 73 65, 102 81 124, 125 85 121 96, 97 37, 53 75, 133 75, 133
Control loop Cornea and retina distance Course of luminosity Cross-section Crustaceans CT CT table D Damage to forests Dark reaction Dead time Deciduous plant Delicate tubes Demo advanced Biology Manual Cobra4 Biochemistry Depolarisation Delotate tubes Demo advanced Biology Manual Cobra4 Biochemistry Depolarisation Dialysis tube Diaphragm filter apparatus Diaphragm filter apparatus Diaphragm filter apparatus Diaphragm filter apparatus Diaptagen filter apparatus Diaptal Diatolic blood pressure Diffusion potential Digital Function Generator, USB Digital imaging Dipole Direct imaging sensor Disinfection Diurnal rhythm Doppler angle Doppler effect Donpler sonoeranby	87 70, 134 40 25 29 119 121 36 37, 53 37, 53 37, 53 87 25 26 62 52 105 56, 92, 103 99 99 88 77 73 65, 102 81 124, 125 85 121 96, 97 37, 53 75, 133 75, 133
Control loop Cornea and retina distance Course of luminosity Cross-section Crustaceans CT CT CT table D Damage to forests Dark reaction Dead time Deciduous plant Delicate tubes Demo advanced Biology Manual Cobra4 Biochemistry Dependence of photosynthesis on light and carbon Depolarisation Dialysis tube Diaphragm filter apparatus Diaphragm filter apparatus Diaphragmatic and thoracic respiration Distolic Diastolic blood pressure Diffusion potential Digital Function Generator, USB Digital imaging Dipole Distofection Distofection Disection Distofection Dis	87 70, 134 40 25 29 119 121 36 37, 53 37, 53 87 25 26 62 52 105 56, 92, 103 99 88 77 73 65, 102 81 124, 125 85 121 96, 97 37, 53 87 75, 133 75, 133 75, 133
Control loop Corree and retina distance Course of luminosity Cross-section Crustaceans CT CT CT table D Damage to forests Dark reaction Daylight reaction Dead time Deciduous plant Delicate tubes Demo advanced Biology Manual Cobra4 Biochemistry Dependence of photosynthesis on light and carbon Depolarisation Dialysis tube Diaphragm filter apparatus Diaphragm filter apparatus Diaphragm filter apparatus Diaphragm filter apparatus Diaphragm filter apparatus Diaphragm filter apparatus Diastolic blood pressure Difital Function Generator, USB Digital imaging Dipole Distection Diurnal thythm Doppler angle Doppler sonography Dosimeter Double pulse stimulation	87 70, 134 40 25 29 119 121 36 37, 53 37, 53 87 25 26 62 52 105 56, 92, 103 99 88 77 73 65, 102 81 124, 125 85 121 96, 97 37, 53 87 75, 133 75, 133 75, 133 128 65, 107
Control loop Cornea and retina distance Course of luminosity Cross-section Crustaceans CT CT table D Damage to forests Dark reaction Daylight reaction Dead time Deciduous plant Deciduous plant Delicate tubes Demo advanced Biology Manual Cobra4 Biochemistry Dependence of photosynthesis on light and carbon Depolarisation Dialysis tube Diaphragm filter apparatus Diaphragm filter apparatus Diaphragmatic and thoracic respiration Diatole Distole Distole Digital function Generator, USB Digital imaging Dipole Direct imaging sensor Disinfection Diurnal rhythm Doppler angle Double pulse stimulation Drinking water	87 70, 134 40 25 29 119 121 36 37, 53 37, 53 37, 53 87 25 26 62 52 105 56, 92, 103 99 88 77 73 65, 102 81 124, 125 85 121 96, 97 37, 53 75, 133 75, 133 128 65, 107 35
Control loop Cornea and retina distance Course of luminosity Cross-section Crustaceans CT CT table D Damage to forests Dark reaction Dead time Deciduous plant Delicate tubes Demo advanced Biology Manual Cobra4 Biochemistry Dependence of photosynthesis on light and carbon Depolarisation Diaphragm filter apparatus Diaphragm filter apparatus Disole Polter apparatus Dipole Direct imaging sensor Disinfection Diurnal trythm Doppler angle Doppler onography Dosimeter Double pulse stimulation Dirinking water Dynamic force Imaging	87 70, 134 40 25 29 119 121 36 37, 53 37, 53 37, 53 87 25 26 62 52 105 56, 92, 103 99 88 77 73 65, 102 81 124, 125 85 121 96, 97 37, 53 75, 133 75, 133 128 65, 107 35 28, 137
Control loop Cornea and retina distance Course of luminosity Cross-section Crustaceans CT CT CT table D Damage to forests Dark reaction Dead time Decide tubes Deed time Decide tubes Demo advanced Biology Manual Cobra4 Biochemistry Dependence of photosynthesis on light and carbon Depolarisation Dialysis tube Diaphragm filter apparatus Diaphragm filter apparatus Diaphragm filter apparatus Diaphragm filter apparatus Diaphragm filter apparatus Diaptragmatic and thoracic respiration Diatolic blood pressure Diffusion potential Digital Function Generator, USB Digital imaging Dipole Direct imaging sensor Disinfection Diurnal rhythm Doppler angle Doppler sonography Dosimeter Double pulse stimulation Drinking water Dynamic Force Imaging Dynamic Mode	87 70, 134 40 25 29 119 121 36 37, 53 37, 53 37, 53 87 25 26 62 52 105 56, 92, 103 99 99 88 77 73 65, 102 81 124, 125 85 121 96, 97 37, 53 75, 133 75, 133 75, 133 75, 133 75, 133 75, 133 75, 133 75, 133 728 88 77 75, 133 75, 133 75, 133 75, 133 75, 133 728 88 77 75, 133 75, 133 75, 133 75, 133 75, 133 75, 133 727, 100, 136
Control loop Cornea and retina distance Course of luminosity (ross-section Crustaceans CT CT table D Damage to forests Dark reaction Dead time Deciduous plant Delicate tubes Demo advanced Biology Manual Cobra4 Biochemistry Dependence of photosynthesis on light and carbon Depolarisation Dialysis tube Diaphragm filter apparatus Diaphragm filter apparatus Diaphragmatic and thoracic respiration Digital Function Generator, USB Digital imaging Dipole Distoficon Diurnal thythm Doppler angle Doppler sonography Dosimeter Double pulse stimulation Dirking water Dynamic Force Imaging Dynamic Force Imaging Dynamic Force Imaging	87 70, 134 40 25 29 119 121 36 37, 53 37, 53 87 25 26 62 52 105 56, 92, 103 99 88 77 73 65, 102 81 124, 125 85 121 96, 97 37, 53 75, 133 75, 135 75, 1
Control loop Cornea and retina distance Course of luminosity Cross-section Crustaceans Cr Cr table D Damage to forests Dark reaction Daylight reaction Dead time Deciduous plant Delicate tubes Demo advanced Biology Manual Cobra4 Biochemistry Dependence of photosynthesis on light and carbon Depolarisation Dialysis tube Diaphragm filter apparatus Diaphragm filter apparatus Diaphragmatic and thoracic respiration Dijtals Function Generator, USB Digital Function Generator, USB Digital imaging Dipole Distection Diurnal thythm Doppler angle Dopoler effect Doppler sonography Dosimeter Double pulse stimulation Drinking water Dynamic Force Imaging Dynamic Mathematic thamber	87 70, 134 40 25 29 119 121 36 37, 53 37, 53 37, 53 87 25 26 62 52 105 56, 92, 103 99 88 77 73 65, 102 81 124, 125 85 121 96, 97 37, 53 75, 133 75, 135 75, 155 75, 15
Control loop Cornea and retina distance Course of luminosity Cross-section Crustaceans Cr Cr table D Damage to forests Dark reaction Daylight reaction Dead time Deciduous plant Delicate tubes Demo advanced Biology Manual Cobra4 Biochemistry Dependence of photosynthesis on light and carbon Depolarisation Dialysis tube Diaphragm filter apparatus Diaphragm tilter apparatus Diaphragmatic and thoracic respiration Diastole Diastolic blood pressure Diffusion potential Digital Function Generator, USB Digital imaging Dipole Direct imaging sensor Disinfection Distinetci Doppler angle Doppler angle Doppler effect Doppler sonography Dosimeter Double pulse stimulation Dirinking water Dynamic Force Imaging Dynamic Mode E Earthworm experiment chamber Earwig	87 70, 134 40 25 29 119 121 36 37, 53 37, 53 87 25 26 62 52 105 56, 92, 103 99 88 77 73 65, 102 81 124, 125 85 121 96, 97 37, 53 75, 133 75, 133 75, 133 128 65, 107 35 28, 137 27, 100, 136
Control loop Cornea and retina distance Course of luminosity Cross-section Crustaceans Cr Cr table D Damage to forests Dark reaction Dead time Decidet tubes Demo advanced Biology Manual Cobra4 Biochemistry Dependence of photosynthesis on light and carbon Depolarisation Diaphragm filter apparatus Diaphragm filter apparatus Diaptolic blood pressure Diffusion potential Digital Function Generator, USB Digital imaging Dipole Direct imaging sensor Disinfection Diurnal rhythm Doppler angle Doppler sonography Dosimeter Double pulse stimulation Drinking water Dynamic Force Imaging Dynamic Kode E Earthworm experiment chamber Earwig ECG segments	87 70, 134 40 25 29 119 121 36 37, 53 37, 53 37, 53 87 25 26 62 52 105 56, 92, 103 99 88 77 73 65, 102 81 124, 125 85 121 96, 97 37, 53 75, 133 75, 133 75, 133 75, 133 75, 133 128 65 52 85 121 96, 97 37, 53 75, 133 75, 132 77, 100, 136
Control loop Cornea and retina distance Course of luminosity Cross-section Crustaceans Cr Cr table D Damage to forests Dark reaction Dead time Decidet ubes Decide tubes Demo advanced Biology Manual Cobra4 Biochemistry Deleicate tubes Demo advanced Biology Manual Cobra4 Biochemistry Dependence of photosynthesis on light and carbon Depolarisation Dialysis tube Diaphragm filter apparatus Diaphragm filter apparatus Diaphragm filter apparatus Diaphragm filter apparatus Diaphragmatic and thoracic respiration Digital binot pressure Diffusion potential Digital Function Generator, USB Digital imaging Dipole Direct imaging sensor Disinfection Diurnal rhythm Doppler angle Doppler onography Dosimeter Double pulse stimulation Drinking water Dynamic Korce Imaging Dynamic Mode E Earthworm experiment chamber Eartwig ECG segments Echo amplitude	87 70, 134 40 25 29 119 121 36 37, 53 37, 53 37, 53 87 25 26 62 52 105 56, 92, 103 99 98 88 77 73 65, 102 81 124, 125 85 121 96, 97 37, 53 75, 133 75, 133 75, 133 75, 133 75, 133 75, 133 727, 100, 136
Control loop Correa and retina distance Course of luminosity Cross-section Crustaceans CT CT CT table D Damage to forests Dark reaction Daylight reaction Dead time Deciduous plant Delicate tubes Demo advanced Biology Manual Cobra4 Biochemistry Dependence of photosynthesis on light and carbon Depolarisation Dialysis tube Diaphragm filter apparatus Diaphragm filter apparatus Diaphragmatic and thoracic respiration Dijatsi tube Diastolic Diastolic Blood pressure Difital Function Generator, USB Digital imaging Dipole Distoftion Diurnal thythm Doppler angle Doppler sonography Dosimeter Double pulse stimulation Drinking water Dynamic Force Imaging Dynamic Mode E Earthworm experiment chamber Earwig ECG segments Echo amplitude Echocardiography	87 70, 134 40 25 29 119 121 36 37, 53 37, 53 87 25 26 62 52 105 56, 92, 103 99 88 77 73 65, 102 81 124, 125 85 121 96, 97 37, 53 87 75, 133 75, 134
Control loop Corree and retina distance Course of luminosity Cross-section Crustaceans Cr Cr Cr table D Damage to forests Dark reaction Daylight reaction Dead time Deciduous plant Delicate tubes Demo advanced Biology Manual Cobra4 Biochemistry Dependence of photosynthesis on light and carbon Depolarisation Dialysis tube Diaphragm filter apparatus Diaphragm filter apparatus Diaphragm filter apparatus Diaphragm filter apparatus Diaphragm filter apparatus Diastolic blood pressure Difital Function Generator, USB Digital imaging Dipole Distection Diurnal rhythm Doppler angle Doppler effect Doppler effect Doppler sonography Dosimeter Double pulse stimulation Drinking water Dynamic Force Imaging Dynamic Mode E Earthworm experiment chamber Earwig ECG segments Echo amplitude Echocardiography Ecology case, biological water analysis EEM	87 70, 134 40 25 29 119 121 36 37, 53 37, 53 87 25 26 62 52 105 56, 92, 103 99 88 77 73 65, 102 81 124, 125 85 121 96, 97 37, 53 75, 133 75, 133 75, 133 75, 133 128 65, 107 35 28, 137 27, 100, 136
Control loop Cornea and retina distance Course of luminosity Cross-section Crustaceans CT CT table D Damage to forests Dark reaction Dead time Decidious plant Delicate tubes Demo advanced Biology Manual Cobra4 Biochemistry Dependence of photosynthesis on light and carbon Depolarisation Diaphragm filter apparatus Diaphragm filter apparatus Diaphragmatic and thoracic respiration Diastole Diaphragm filter apparatus Digital function Generator, USB Digital function Generator, USB Distect function Generator, USB Digital function Generator, US	87 70, 134 40 25 29 119 121 36 37, 53 37, 53 37, 53 87 25 26 62 52 105 56, 92, 103 99 88 77 73 65, 102 81 124, 125 85 121 96, 97 37, 53 75, 133 75, 133 128 65, 107 35 28, 137 27, 100, 136
Control loop Cornea and retina distance Course of luminosity Cross-section Crustaceans CT CT table D Damage to forests Dark reaction Dead time Deciduous plant Delicate tubes Demo advanced Biology Manual Cobra4 Biochemistry Dependence of photosynthesis on light and carbon Depolarisation Dialysis tube Diaphragm filter apparatus Diaphragm filter apparatus Diaphragm filter apparatus Diaptragmatic and thoracic respiration Digital Function Generator, USB Digital imaging Dipole Direct imaging sensor Disinfection Duurnal rhythm Doppler angle Doppler sonography Dosimeter Dynamic Force Imaging Dynamic Force Imaging E E Earthworm experiment chamber Eartwig ECG segments ECH action Eight and sensor EFM Electrical field measurement Electri	87 70, 134 40 25 29 119 121 36 37, 53 37, 53 37, 53 87 25 26 62 52 105 56, 92, 103 99 88 77 73 65, 102 81 124, 125 85 121 96, 97 37, 53 75, 133 75, 132 77, 100, 136
Control loop Cornea and retina distance Course of luminosity Cross-section Crustaceans CT CT table D Damage to forests Dark reaction Dead time Deciduous plant Delicate tubes Demo advanced Biology Manual Cobra4 Biochemistry Dependence of photosynthesis on light and carbon Depolarisation Dialysis tube Diaphragm filter apparatus Diaphragm filter apparatus Diaphragmatic and thoracic respiration Distolic Distolic Distolic Blood pressure Diffusion potential Digital Function Generator, USB Digital imaging Dipole Direct imaging sensor Disinfection Durnal rhythm Doppler sonography Dosimeter Double pulse stimulation Drinking water Dynamic Korce Imaging ECG segments Eccho amplitude Echocardiography Eccloagy case, biological water analysis EFM Electrical resistance of nerve fibres Electrical stimulation Direst imaging case Electrical stimulation Direst field measurement Electrical stimulation	87 70, 134 40 25 29 119 121 36 37, 53 37, 53 37, 53 87 25 26 62 52 105 56, 92, 103 99 98 88 77 73 65, 102 81 124, 125 85 121 96, 97 37, 53 75, 133 75, 135 75, 155 75,

Electrocardiogram (ECG)	76
Electrocardiogram according to Finthoven II	72
Electrolytes waste water	35
Electromyogram	79, 80
Electronystagmography	84
Electrostatic Force Microscopy	28, 137
Eluvation	35
End systolic diameter ESU	78, 134
End systolic volume ESV	110 120
Energy dose	128
Energy levels	127
Environmental requirements	66
Enzymatic hydrolysis of urea	93
Enzyme-substrate complex	93
Enzymolysis of urea	93
Equivalence (inflection) points	94
Equivalent dose and their rates	128
Europea	110
Evaporation	86
Excitatory postsynaptic potential (EPSP)	104
Excitatory Synapse	105
Excretion organ	26
Excursion set, soil analysis	45
Expiratory reserve volume (ERV)	88
Extension Set: CT Scanner	131
Extension set: medical ultrasonic diagnostics	78
Lye movements	49, 84, 85
Eye sonography	70,134
F	
Facilitation	80
Fast-Fourier-Transformation (FFT)	129
Feathers	39
Feedback loop	27, 28, 100, 135
Feedback reaction	87
Fermentation	110, 111, 112
Ferns	30
FEV FID simul	120
FID signal (Error Induction Decay)	129
Field of view	729
Finger Jahvrinth	48
Fish swarm. Swarm behavior	50
Fixation period	85
Flame coloration	58
Flapping sound	77
Flatworms	29
Flaw detection	132
Flicker fusion frequency	83
Fluorescence	119, 120, 123, 124
Figure	127
Follow-through time	87
Force spectroscopy	28.137
Forced expiratory volume (FEV)	89
Frequency differentiation threshold	81
Frequency modulation	64, 104, 107
Frequency shift	75, 133
Frond	30
Fungus	31
FUI	39
G	
Ganglion cell	106
Gaseous and aerosol emissions	36
Generation of onshore and offshore winds	34
Geographical location	40
Geographical seperation	66
Geotroprism	59
Glucoso	25
Glucolveis	60 61
Goniometer	127
Gradient echo	129
Greyscale display	132
H	FC 02 102
H+ 10NS	56, 92, 103
naemocytometer	01
Hearing thresholds curve	01 91
Heart muscle	76
Heart rate	72, 78, 134
Heart wall motion	78, 134
Heat capacity	34
Heat radiation	34
Heating / cooling effects	86
Heavy and moderate smokers	74
Horizontal/vertical zones	35
numan electrooculography	83
numan Hair	27 100 136
Humidity and type of leaves	55
Humidity preferendum	67

T	
Image artefacts	132
Imaging methods	130
Imaging of biological samples	27, 100, 136
Immetsion probe Nitr-Ni, steel, -50400 °C	114
Implant model.	124, 125
In slight and strong exertion	88
Influence of temperature and pH Influence of wind	6U 55
Inorganic fertilisers	41, 57
Insects	66
Inspiratory reserve volume (IRV)	88
Intensity and colour of the light	53
Interneuron	106
Intracellular potential	104
Ion dose and their rates	65. 102
Ionic permeability	56, 92, 103
Ionising energy	128
Ionizing energy	128
asseree point	51
J	00
Jendrassik effect	80
K	
Kidney	26
Laboratory Experiments Application of ultrasounds	139
Laboratory Experiments Magnetic Resonace	139
Lambert-Beer law	126
Large-scale display, digital, RS-232 port	5/
Lateral branches	25
Lateral inhibition	105
Lauterbur	130
Law of ausorption	119, 120
Learning behaviour	48
Learning curve	48
Leaves	68
Lennard-Jones-Potential	27, 100, 135
Lens thickness	70, 134
Light/dark adapted eye	83
Lineweaver-burk plot	26
Liver cells	26
Local ion dose rate	128
Longitudinal and transverse magnetisation	40
Low-pass characteristic	104
Low-pass filtering	105
Lung volume	89
Lux measurement	52
M Magnotic Force Microscopy	20 127
Magnetic gradient fields	129
Magnetic Resonance Technology	139
Magnetic resonance tomography	130
Magnetisation	129, 130
Mating behavior	31
Mean ultrasound velocity	70, 134
Measuring cuff	/3
Median and lateral giant nerve fibres	64, 107
Medical diagnostic	130
Medium term memory	48
Merging frequency	81
Metabolism	26
MFM	28, 137
Microbial count	93
Microbial extraction	113
Microbial synthesis of ethanol	111
Microscope Microscope	99
Mineral water	35
Minerals	58
Minimum stimulus intensity	104
Molds	31
Monocotyledonous plants	25
Motor piston burette	94
MR frequency	129
MR imaging	129
MR physics	129, 130
MRT	129, 130
Muscle potentials	79

Muscle stretch reflex	80
Μ	
Nano analysis	28, 137
Nano imaging	27, 28, 100, 135
Nano manipulation	28, 137
Negative geotropism of shoots	59
Nematodes	29
Nerv cell interaction	105
Nerve cell interaction	106
Neural network	106
Neurosimulator	104
Nocturnal rhythm	37, 53
Nodes of Ranvier	104
Non destructive testing (NDT)	132
Non-smokers	74
Nuclear magnetic resonance	129, 130
Nucleus	24
Nutrient agar	96, 97
Nystagmus	84
0	
Obstructive respiratory illness	89
Occasional smokers	74
Optomotor response	68
Ore	113
Origin of climatic fluctuations	34
Osmotic pressure	56
Osmotic processes	56, 92, 103
Oxidation	113
Oxygen bubble counting	51, 54 52
Oxygen consumption	69
D	
Panel for complete experimental setups	110
Pathogens	31
Pattern frequency Perimeter	68
pH measurement	37, 53
pH value	42
pH-electrode, plastic body, gel, BNC	3/ 28 137
Phonocardiography	77
Photosynthesis	25, 37, 52, 53
Phototaxis PKs value	94
Planarians	29
Plants	25
Poikilothermic animals Poisoning of enzymes	93
Positive feedback	64, 107
Positive geotropism of roots	59
Practised reader versus schoolchild	85
Precession of nuclear spins	129
Preferential temperature	66
Propagation of ultrasonic waves	132
Pulse	77
Pulse duration (DT)	78, 134
Puicen	130
0	
Q factor	128
Quiet and strained heart	72, 77
D	
K Radiation	86
Radiography	123, 124, 125
Rainwater	35
Reaction capacity	87
Reaction velocity of enzymatic hydrolysis	93
Reading speed	49
Reflection coefficient	132
Reflex latency	80
Refractory period	65, 107
Renal corpuscie	26
Representation of motion sequences	78, 134
Resonance condition	131, 132 129
Respiration energy	61
Respiratory frequency	88
Respirometer complete assembly	69
Resting potential	65, 102
Restrictive respiratory illnesses	89

River water	35
Rods and cones	83
Rollaway table	124
Rotation table	121
Rotational speed	59
c	
Sacchades	85
Salinity	41. 57
Scotoma	83
Seasonal influences	40
Selective ion permeability of membranes	65, 102
Self-calibration of paired sensory channels	106
Set of TESS Microscopy MIC, with CD-ROM and	32
Shapes	31
Short term memory	48
Signal-to-noise latio	E 102
Silver nitrate inhibition of urease	03
Simple organization	29
Sine wave generator	81
Skin Cross-Section	27, 100, 136
Skin temperature	74, 86
Software Cobra4 - multi-user licence	60, 79
Soil horizon	42
Sound velocity	132
Spatial encoding (frequency coding, phase coding)	129
Spatial encouning (nequency encouning)	82
Spectrophotometer \$800, 330, 800 nm	111
Spectroscopy	58, 119, 120
Spin echo	129, 130
Spin-lattice relaxation	129
Spin-spin relaxation	129
Spirogram	88
Spirometer	88
Spore capsular	20, 137
Springtail	50
Staining	98
Starch	25
Static Force Imaging	28, 137
Static mode, Dynamic Mode	27, 100, 135
Statoliths	59
Stem	25
Stenosis	75, 133
Stereographic projection	125
Sterinty	50 68 84 87
Substrate inhibition	93
	12
Substratum	42
Subtractive colour mixing	83
Substratum Subtractive colour mixing Supersonic	42 83 139
Substratum Subtractive colour mixing Supersonic SWIFT student microscope M3601C	42 83 139 24
Substratum Subtractive colour mixing Supersonic SWIFT student microscope M3601C SWIFT student microscope M3602C-3	42 83 139 24 98
Substratum Subtractive colour mixing Supersonic SWIFT student microscope M3601C SWIFT student microscope M3602C-3 Synaptic depression	42 83 139 24 98 64, 107
Substratum Subtractive colour mixing Supersonic SWIFT student microscope M3601C SWIFT student microscope M3602C-3 Synaptic depression Synaptic facilitation	42 83 139 24 98 64, 107 64, 107
Substratum Subtractive colour mixing Supersonic SWIFT student microscope M3601C SWIFT student microscope M3602C-3 Synaptic depression Synaptic facilitation Systole Systole	42 83 139 24 98 64, 107 64, 107 77 72
Substratum Subtractive colour mixing Supersonic SWIFT student microscope M3601C SWIFT student microscope M3602C-3 Synaptic depression Synaptic facilitation Systole Systolic blood pressure	42 83 139 24 98 64, 107 64, 107 77 73
Substratum Subtrative colour mixing Supersonic SWIFT student microscope M3601C SWIFT student microscope M3602C-3 Synaptic depression Synaptic facilitation Systole Systolic blood pressure	42 83 139 24 64, 107 64, 107 77 73
Substratum Subtrative colour mixing Supersonic SWIFT student microscope M3601C SWIFT student microscope M3602C-3 Synaptic depression Synaptic facilitation Systole Systolic blood pressure T TJ/T2 relaxation times	42 83 139 24 98 64, 107 64, 107 77 73
Substratum Substratum Supersonic SWIFT student microscope M3601C SWIFT student microscope M3602C-3 Synaptic depression Synaptic facilitation Systole Systole Systole Systole T T1/T2 relaxation times Temperature	42 83 139 24 98 64, 107 64, 107 77 73 129 55
Substratum Subtratum Subtractive colour mixing Supersonic SWIFT student microscope M3601C SWIFT student microscope M3602C-3 Synaptic depression Synaptic depression Synaptic facilitation Systole Systole Systole blood pressure T T T T T T T T T r Eneperature T emperature T emperature T emperature measurement	42 83 139 24 98 64, 107 64, 107 77 73 129 55 61
Substratum Subtrative colour mixing Supersonic SWIFT student microscope M3601C SWIFT student microscope M3602C-3 Synaptic depression Synaptic facilitation Systole Systole Systolic blood pressure T T T T T T T T T T T T T T T T T T T	42 83 139 24 98 64, 107 64, 107 77 73 129 55 61 66
Substratum Substratum Supersonic SWIFT student microscope M3601C SWIFT student microscope M3602C-3 Synaptic depression Synaptic facilitation Systole Systole blood pressure T T1/T2 relaxation times Temperature Temperature measurement Temperature optimum Temperature optimum Temperature optimum	42 83 139 24 98 64, 107 64, 107 77 73 129 55 61 66 66 66 66
Substratum Substratum Substratum Substratum Subtractive colour mixing Supersonic SWIFT student microscope M3601C SWIFT student microscope M3602C-3 Synaptic depression Synaptic facilitation Systole Systolic blood pressure T T1/12 relaxation times Temperature Temperature Temperature organ Temporal summation Temperature facilitation Temperature of facilitation Temperature Temper	42 83 139 24 98 64, 107 64, 107 64, 107 77 73 129 55 61 66 66 66 105
Substratum Substratum Substratum Substratum Substratum Supersonic SWEFT student microscope M3601C SWIFT student microscope M3602C-3 Synaptic depression Synaptic facilitation Systole Systolic blood pressure T T Temperature optimum Temperature organ Temporal summation Territorial fights TESS advanced Applied Sciences set	42 83 139 24 98 64, 107 64, 107 77 73 129 55 61 66 66 66 105 31 90
Substratum Substratum Substratum Substratum Substratum Supersonic SWEFT student microscope M3601C SWIFT student microscope M3602C-3 Synaptic depression Synaptic depression Synaptic facilitation Systole Systole Systole Systole T T T T T T T T T T T T T T T T T T T	42 83 139 24 98 64, 107 64, 107 77 73 129 55 61 66 66 66 66 66 105 31 90 90
Substratum Substratum Subtrative colour mixing Supersonic SWIFT student microscope M3601C SWIFT student microscope M3602C-3 Synaptic depression Synaptic facilitation Systole Systole blood pressure T T1/T2 relaxation times Temperature Temperature measurement Temperature optimum Temperature organ Temporal summation Territorial fights TESS advanced Applied Sciences set TESS advanced Biology manual Microscopy	42 83 139 24 98 64, 107 64, 107 77 73 129 55 61 66 66 66 66 66 105 31 90 90 32
Substratum Substratum Substratum Substratum Substratum Substratue colour mixing Supersonic SWIFT student microscope M3601C SWIFT student microscope M3602C-3 Synaptic depression Synaptic facilitation Systole Systole Systole Superson T T1/T2 relaxation times Temperature Temperature measurement Temperature organ Temporal summation Temporal summation Tests advanced Biology manual Microscopy TESS advanced Biology set Microscopy	42 83 139 24 98 64, 107 64, 107 77 73 129 55 61 66 66 66 66 105 31 90 90 90 32 32
Substratum Substratum Substratum Substratum Substratum Substratum Substratum Substratum Substratum Superson Superson Synaptic depression Synaptic depression Synaptic facilitation Systole Systolic blood pressure T T1/12 relaxation times Temperature Temperature Temperature organ Temporal summation Territorial fights TESS advanced Biology manual Microscopy TESS advanced Biology set Microscopy TESS advanced Microscopy MIC consumables for 10	42 83 139 24 98 64, 107 64, 107 64, 107 77 73 129 55 61 66 66 66 105 31 90 90 90 32 32 32
Substratum Substratum Supersonic SWIFT student microscope M3601C SWIFT student microscope M3602C-3 Synaptic depression Synaptic facilitation Systole Systolic blood pressure T T1/T2 relaxation times Temperature Temperature measurement Temperature optimum Temperature	42 83 139 24 98 64, 107 64, 107 77 73 129 55 61 66 66 66 66 105 31 90 90 32 32 32 32
Substratum Substratum Subtrative colour mixing Supersonic SWIFT student microscope M3601C SWIFT student microscope M3602C-3 Synaptic depression Synaptic facilitation Systole Systole blood pressure T T1/T2 relaxation times Temperature Temperature measurement Temperature optimum Temperature optimum Temperature organ Temporal summation Territorial fights TESS advanced Applied Sciences set TESS advanced Biology manual Microscopy TESS advanced Biology set Microscopy TESS advanced Microscopy MIC consumables for 10 TESS advanced Microscopy MIC consumables for 10	42 83 139 24 98 64, 107 64, 107 77 73 129 55 61 66 66 66 66 66 66 105 31 90 90 90 32 32 32 32 32 32 32
Substratum Substratum Substratum Substratum Substratue colour mixing Supersonic SWIFT student microscope M3601C SWIFT student microscope M3602C-3 Synaptic depression Synaptic facilitation Systole Systole Systole blood pressure T TJ/T2 relaxation times Temperature Temperature optimum Temperature optimum Temperature organ Temporal summation Territorial fights TESS advanced Applied Sciences set TESS advanced Biology manual Cobra4 TESS advanced Biology manual Microscopy TESS advanced Microscopy MIC consumables for 10 TESS advanced Microscopy MIC necessary TESS advanced Microscopy MIC necessary TESS Biology set chemo-physical water testing TESS enter the state of the state o	42 83 139 24 98 64, 107 64, 107 77 73 129 55 61 66 66 66 66 66 105 31 90 90 90 32 32 32 32 32 32 45 43
Substratum Substratum Substratum Substratum Substratum Substratum Substratum Substratum Substratum Synaptic depression Synaptic depression Synaptic depression Synaptic facilitation Systole Systole T T T1/T2 relaxation times Temperature Temperature organ Temporal summation Territorial fights TESS advanced Applied Sciences set TESS advanced Biology manual Microscopy TESS advanced Biology set Microscopy TESS advanced Microscopy MIC consumables for 10 TESS advanced Microscopy MIC necessary TESS Biology set chemo-physical water testing TESS Appendix Applied Sciences Tess Appendix Sciences Tess Applied Sciences Tess Tess Applied Sciences Tess Tess Tess Tess Tess Tess Tess T	42 83 139 24 98 64, 107 64, 107 77 73 129 55 61 66 66 66 66 105 31 90 90 90 32 32 32 32 32 32 32 32 32 32 32 32 32
Substratum Substratum Subtrative colour mixing Supersonic SWIFT student microscope M3601C SWIFT student microscope M3602C-3 Synaptic facilitation Systole Systole Systolic blood pressure T T1/T2 relaxation times Temperature measurement Temperature measurement Temperature optimum Temperature optimum Tess advanced Biology manual Microscopy TESS advanced Biology set Microscopy TESS advanced Microscopy MIC necessary TESS Applied Sciences set examination of soil TESS Biology set chemo-physical water testing TESS expert Physics Handbook X-Ray Experiments Thermotaxis	42 83 139 24 98 64, 107 64, 107 77 73 129 55 61 66 66 66 66 66 66 66 66 90 90 90 92 32 32 32 32 32 32 45 43 138 66
Substratum Substratum Subtrative colour mixing Supersonic SWIFT student microscope M3601C SWIFT student microscope M3602C-3 Synaptic depression Synaptic facilitation Systole Systole blood pressure T T1/T2 relaxation times Temperature Temperature measurement Temperature optimum Temperature organ Temporal summation Territorial fights TESS advanced Applied Sciences set TESS advanced Biology manual Microscopy TESS advanced Biology manual Cobra4 TESS advanced Biology set Microscopy TESS advanced Microscopy MIC consumables for 10 TESS advanced Microscopy MIC recessary TESS advan	42 83 139 24 98 64, 107 64, 107 77 73 129 55 61 66 66 66 66 66 66 105 31 90 90 90 92 32 32 32 32 32 32 32 32 32 32 32 32 32
Substratum Substratum Substrature colour mixing Supersonic SWIFT student microscope M3601C SWIFT student microscope M3602C-3 Synaptic depression Synaptic facilitation Systole Systole blood pressure T T1/T2 relaxation times Temperature Temperature optimum Temperature organ Temporal summation Temporal summation Territorial fights TESS advanced Applied Sciences set TESS advanced Biology manual Cobra4 TESS advanced Biology manual Microscopy TESS advanced Biology manual Microscopy TESS advanced Biology set Microscopy TESS advanced Biology set Microscopy TESS advanced Biology set Microscopy TESS advanced Microscopy MIC onsumables for 10 TESS advanced Microscopy MIC necessary TESS advanced Microscopy MIC necessary TESS Biology set chemo-physical water testing TESS expert Physics Handbook X-Ray Experiments Thermotaxis Thigmotaxis Thin layer chromatography Threshold angle	42 83 139 24 98 64, 107 64, 107 77 73 129 55 61 66 66 66 66 66 66 66 66 90 90 90 90 90 90 92 32 32 32 32 32 32 32 32 32 32 32 32 32
Substratum Substratum Substratum Substratum Substratum Substratum Substratum Substratum Substratum Synaptic columnation Synaptic depression Synaptic depression Synaptic facilitation Systole Systolic blood pressure T T1/T2 relaxation times Temperature Temperature organ Temporal summation Territorial fights TESS advanced Applied Sciences set TESS advanced Biology manual Cobra4 TESS advanced Biology manual Microscopy TESS advanced Microscopy MIC consumables for 10 TESS advanced Microscopy MIC consumables for 10 TESS advanced Microscopy MIC set esting TESS Advanced Microscopy MIC necessary TESS advanced Microscopy MIC necessary TESS Advanced Microscopy MIC recessary TESS Advanced Microscopy MIC necessary TESS Advan	42 83 139 24 98 64, 107 64, 107 77 73 129 55 61 66 66 66 105 31 90 90 90 32 32 32 32 32 32 32 32 32 32 32 32 32
Substratum Subtrative colour mixing Supersonic SWIFT student microscope M3601C SWIFT student microscope M3602C-3 Synaptic depression Synaptic facilitation Systole Systolic blood pressure T T1/T2 relaxation times Temperature measurement Temperature measurement Temperature optimum Temperature optimum Tess advanced Biology manual Microscopy TESS advanced Biology set Microscopy TESS advanced Microscopy MIC consumables for 10 TESS advanced Microscopy MIC consumables for 10 TESS advanced Microscopy MIC necessary TESS Ad	42 83 139 24 98 64, 107 64, 107 77 73 129 55 61 66 66 66 66 66 66 105 31 90 90 32 32 32 32 32 32 32 32 32 32 32 32 32
Substratum Subtrative colour mixing Supersonic SWIFT student microscope M3601C SWIFT student microscope M3602C-3 Synaptic depression Synaptic facilitation Systole Systole Systolic blood pressure T T1/T2 relaxation times Temperature Temperature measurement Temperature optimum Temperature optimum Tess advanced Biology manual Microscopy TESS advanced Biology set Microscopy TESS advanced Microscopy MIC necessary TESS Advanced Microscopy MIC consumables for 10 TESS Applied Sciences set examination of soil TESS advanced Microscopy MIC consumables for 10 TESS Applied Sciences set examination of soil TESS Septimum Tess experiments Thermotaxis Thig motaxis Thig motaxis Thig motaxis Thin layer chromatography Threat and chest sonic measurement Tidal volume (TV)	42 83 139 24 98 64, 107 64, 107 77 73 129 55 61 66 66 66 66 66 105 31 90 90 90 92 32 32 32 32 32 32 43 138 66 66 66 66 66 77 73 87 77 88
Substratum Subtratum Subtrature colour mixing Supersonic SWIFT student microscope M3601C SWIFT student microscope M3602C-3 Synaptic depression Synaptic facilitation Systole Systole blood pressure T T1/T2 relaxation times Temperature Temperature measurement Temperature optimum Temperature optimum Temperature ogtimum Temperature ogtimum Tess advanced Applied Sciences set TESS advanced Biology manual Microscopy TESS advanced Biology manual Microscopy TESS advanced Biology manual Microscopy TESS advanced Biology manual Microscopy TESS advanced Microscopy MIC consumables for 10 TESS advanced Microscopy MIC consumables for 10 TESS Applied Sciences set examination of soil TESS Biology set chemo-physical water testing TESS expert Physics Handbook X-Ray Experiments Thermotaxis Thigmotaxis Thin layer chromatography Threshold angle Threshold frequency Ihroat and chest sonic measurement Tidal volume (TV)	42 83 139 24 98 64, 107 64, 107 77 73 129 55 61 66 66 66 66 66 105 31 90 90 90 90 92 32 32 32 32 32 45 43 138 66 66 66 61 112 82 87 77 77 88 89 90 90 90 90 90 90 90 90 90 9
Substratum Subtratum Subtrature colour mixing Supersonic SWIFT student microscope M3601C SWIFT student microscope M3602C-3 Synaptic depression Synaptic depression Synaptic facilitation Systole Systole blood pressure T 1 /1/2 relaxation times Temperature Temperature measurement Temperature optimum Temperature organ Temporal summation Temporal summation Territorial fights TESS advanced Applied Sciences set TESS advanced Applied Sciences set TESS advanced Biology manual Cobra4 TESS advanced Biology manual Microscopy TESS advanced Biology set Microscopy TESS advanced Biology set Microscopy TESS advanced Microscopy MIC consumables for 10 TESS advanced Microscopy MIC necessary TESS Biology set chemo-physical water testing TESS expert Physics Handbook X-Ray Experiments Thermotaxis Thin layer chromatography Threshold angle Threshold frequency Throat and chest sonic measurement Tidal volume (TV)	42 83 139 24 98 64, 107 64, 107 77 73 129 55 61 66 66 66 66 105 31 90 90 90 90 90 92 32 32 32 32 32 32 32 32 32 3
Substratum Subtratum Subtrature colour mixing Supersonic SWIFT student microscope M3601C SWIFT student microscope M3602C-3 Synaptic facilitation Systole Systole Systolic blood pressure T T1/T2 relaxation times Temperature measurement Temperature measurement Temperature optimum Temperature optimum Tess advanced Biology manual Microscopy TESS advanced Biology set Microscopy TESS advanced Biology set Microscopy TESS advanced Microscopy MIC consumables for 10 TESS Advanced Microscopy MIC necessary TESS Applied Sciences set examination of soil TESS Biology set chemo-physical water testing TESS schemer optimiscal water testing TESS expert Physics Handbook X-Ray Experiments Thermotaxis Thin layer chromatography Threshold angle Threshold angle Threshold frequency Throat and chest sonic measurement Tidal volume (TV) Tiffeneau value Time of flight	42 83 139 24 98 64, 107 77 73 129 55 61 66 66 66 66 90 32 32 32 32 32 32 32 32 32 32
Substratum Subtrative colour mixing Supersonic SWIFT student microscope M3601C SWIFT student microscope M3602C-3 Synaptic depression Synaptic facilitation Systole Systolic blood pressure T T1/T2 relaxation times Temperature measurement Temperature optimum Temperature optimum Temperature organ Temporal summation Territorial fights TESS advanced Applied Sciences set TESS advanced Biology manual Microscopy TESS advanced Biology set Microscopy TESS advanced Microscopy MIC consumables for 10 TESS advanced Microscopy MIC consumates for 10 Tess advanced Microscopy	42 83 139 24 98 64, 107 64, 107 77 73 129 55 61 66 66 105 31 90 92 33 66 112 89 104 132 70, 134
Substratum Subtratum Subtrature colour mixing Supersonic SWIFT student microscope M3601C SWIFT student microscope M3602C-3 Synaptic depression Synaptic facilitation Systole Systole blood pressure T T1/T2 relaxation times Temperature Temperature measurement Temperature optimum Temperature optimum Temperature ogtimum Temperature ogtimum Tess advanced Applied Sciences set TESS advanced Biology manual Microscopy TESS advanced Biology manual Microscopy TESS advanced Biology manual Microscopy TESS advanced Biology manual Microscopy TESS advanced Microscopy MIC consumables for 10 TESS advanced Microscopy MIC consumables for 10 TESS Applied Sciences set examination of soil TESS Biology set chemo-physical water testing TESS expert Physics Handbook X-Ray Experiments Thermotaxis Thigmotaxis Thin layer chromatography Threshold frequency Hiroat and chest sonic measurement Tidal volume (TV) Tiffeneau value Time constant of nerve membrane Time of flight Time-Motion-Mode	42 83 139 24 98 64, 107 64, 107 77 73 129 55 61 66 66 66 66 66 66 66 90 90 90 90 90 90 90 90 90 90 92 32 32 32 32 32 32 32 32 32 32 32 32 32
Substratum Subtratum Subtrature colour mixing Supersonic SWIFT student microscope M3601C SWIFT student microscope M3602C-3 Synaptic depression Synaptic depression Synaptic facilitation Systole Systole blood pressure T T 1 /12 relaxation times Temperature Temperature optimum Temperature optimum Temperature optimum Temperature organ Temporal summation Territorial fights TESS advanced Applied Sciences set TESS advanced Applied Sciences set TESS advanced Biology manual Cobra4 TESS advanced Biology manual Cobra4 TESS advanced Biology manual Microscopy TESS advanced Biology set Microscopy TESS advanced Microscopy MIC consumables for 10 TESS advanced Microscopy MIC necessary TESS applied Sciences set examination of soil TESS Biology set chemo-physical water testing TESS expert Physics Handbook X-Ray Experiments Thermotaxis Thing and chest sonic measurement Tidal volume (TV) Tiffeneau value Time constant of nerve membrane Time of flight Time resolving capability Time-Motion-Mode Time-related resolving power	42 83 139 24 98 64, 107 77 73 129 55 61 66 105 31 90 90 32 33 66 66 67 77 88 89 104
Substratum Subtratum variants Subtratum variants Subtratum variants Supersonic SWIFT student microscope M3601C SWIFT student microscope M3602C-3 Synaptic facilitation Systole Systole Systolic blood pressure T T1/T2 relaxation times Temperature measurement Temperature measurement Temperature optimum Temperature optimum Tess advanced Biology manual Korscopy TESS advanced Biology set Microscopy TESS advanced Biology set Microscopy TESS advanced Microscopy MIC consumables for 10 TESS Advanced Microscopy MIC consumables for 10 TESS Advanced Microscopy MIC necessary TESS advanced Microsco	42 83 139 24 98 64, 107 64, 107 77 73 129 55 61 66 66 105 31 90 32 33 138 66 112 89 10
Substratum Subtratum Subtrature colour mixing Supersonic SWIFT student microscope M3601C SWIFT student microscope M3602C-3 Synaptic depression Synaptic facilitation Systole Systole T TI/T2 relaxation times Temperature Temperature measurement Temperature optimum Temperature optimum Tess advanced Biology manual Microscopy TESS advanced Biology set Microscopy TESS advanced Microscopy MIC consumables for 10 TESS advanced Microscopy MIC consumables for 10 TESS Applied Sciences set examination of soil TESS abiology set chemo-physical water testing TESS experiments Thermotaxis Thin layer chromatography Throat and chest sonic measurement Tidal volume (TV) Tiffeneau value Time constant of nerve membrane Time of flight Time related resolving power Titration Tomography	42 83 139 24 98 64, 107 64, 107 77 73 129 55 61 66 66 66 66 66 66 90 90 90 90 90 90 90 90 90 90 90 92 32 32 32 32 32 32 32 32 32 32 32 32 32
Substratum Subtratum Subtratum Subtratum Subtrature colour mixing Supersonic SWIFT student microscope M3601C SWIFT student microscope M3602C-3 Synaptic facilitation Systole Systole blood pressure T TI/T2 relaxation times Temperature measurement Temperature optimum Temperature optimum Temperature optimum Temporal summation TESS advanced Applied Sciences set TESS advanced Biology manual Microscopy TESS advanced Biology manual Microscopy TESS advanced Biology set Microscopy TESS advanced Microscopy MIC consumables for 10 TESS advanced Microscopy MIC consumab	42 83 139 24 98 64, 107 64, 107 77 73 129 55 61 66 61 66 105 31 90 92 33 43 138 66 66 67 77 88 89 104
Substratum Substratum Substratum Substratum Substratum Supersonic SWIFT student microscope M3601C SWIFT student microscope M3602C-3 Synaptic depression Synaptic facilitation Systole Systole Systolic blood pressure T T1/12 relaxation times Temperature Temperature optimum Temperature optimum Temperature optimum Temperature optimum Temporal summation Territorial fights TESS advanced Applied Sciences set TESS advanced Biology manual Cobra4 TESS advanced Biology manual Microscopy TESS advanced Biology set Microscopy TESS advanced Microscopy MIC consumables for 10 TESS advanced Microscopy MIC necessary TESS advanced Microscopy MIC necessary TESS advanced Microscopy MIC sonsumables for 10 TESS advanced Microscopy MIC sonsumables for 10 TESS advanced Microscopy MIC necessary Tess press themo-physical water testing TESS expert Physics Handbook X-Ray Experiments Thermotaxis Thigmotaxis Thigmotaxis Thigmotaxis Thight Time of nerve membrane Time of fight Time for fight Time resolving capability Time-Motion-Mode Time-related resolving power Tittation Tomography Torpor Transpiration Tenueling Advanced microscop Transpiration Tenueling advanced microscop for the sonsument Titat solume TV Torpor Transpiration Tenueling Advanced Time fight Time fig	42 83 139 24 98 64, 107 64, 107 77 73 129 55 61 66 66 66 66 66 66 60 90 90 90 90 90 90 90 90 92 92 92 92 92 92 92 92 932 92 92 92 932 92 932 93
Substratum Subtratum Subtrature colour mixing Supersonic SWIFT student microscope M3601C SWIFT student microscope M3602C-3 Synaptic facilitation Systole Systole Systolic blood pressure T T1/T2 relaxation times Temperature measurement Temperature measurement Temperature optimum Temperature optimum Tess advanced Biology manual Microscopy TESS advanced Biology set Microscopy TESS advanced Microscopy MIC consumables for 10 TESS Advanced Microscopy MIC necessary TESS Advanced Microscopy MIC necessary TESS advanced Microscopy MIC necessary TESS advanced Microscopy MIC necessary TESS Stable	42 83 139 24 98 64, 107 64, 107 77 73 129 55 61 66 61 66 105 31 90 32 33 138 66 104 13
Substratum Subtratum Subtrature colour mixing Supersonic SWIFT student microscope M3601C SWIFT student microscope M3602C-3 Synaptic facilitation Systole Systole Systole blood pressure T T1/T2 relaxation times Temperature Temperature measurement Temperature optimum Temperature optimum Tess advanced Biology manual Microscopy TESS advanced Biology set Microscopy TESS advanced Microscopy MIC consumables for 10 TESS Advanced Microscopy MIC consumables for 10 TESS Advanced Microscopy MIC consumables for 10 TESS Applied Sciences set examination of soil TESS Biology set chemo-physical water testing TESS expert Physics Handbook X-Ray Experiments Thermotaxis Thin layer chromatography Throat and chest sonic measurement Tidal volume (TV) Tiffeneau value Time constant of nerve membrane Time of flight Time related resolving power Tittation Tomography Torpor Transpiration Travelling time difference Turbidimetry Tworelycemia	42 83 139 24 98 64, 107 64, 107 77 73 129 55 61 66 66 61 66 62 90 90 90 92 33 90 104 132 70,

14 Indices 14.2 Alphabetical index

11	
Ultraconic	120
Ultrasonic ochography	70 122 124
Ultrasonic echography (Alissan)	121
Ultrasonic transceiver	122
Ultracound	120
Unitatoral inhibition	106
	100
Upgrade	102
ussing chamber	102
V	
W Vascular hundles	25
Vasculat Dullules	20 75 100
Ventus Flow	75, 155
Ventificies	72 27 100 125
Violation Amplitude	27, 100, 155
Vinegal procedure	114
Visual field (for white, blue, fed, green)	83
Vital capacity (VC)	88, 89
	88
volumetric measurement	09
IA/	
Mator .	25
Water and putricets transport	2.5
Water and nutrients transport	00
Weedlevee	83
Woodlouse	20
WOOI	39
v	
л Х-там	110 120 121 123
X-ray apparatus	125, 127
X-ray camera	121
X-ray dosimetry	121
X-ray energy detector	119 120
X-ray expert unit	121
X-ray fluorescence analysis	119 120
X-ray nhotography	124 125
X-ray tube	123 126
X-ray upgrade set	119 120
XR 4 0 Mobile X-ray Lab	124
XR 4.0 Software measure (T	121
XR 4.0 X-ray (T.7-rotation stage (XRStage)	121
XR 4.0 X-ray Direct Digital Image Sensor (XRIS)	121
XR 4.0 X-ray goniometer	127
XR 4.0 X-ray plug-in unit W tube	126
XRCT 4.0 X-ray Computed Tomography upgrade set	119 120
XRD 4.0 X-ray dosimetry ungrade set	128
XRE 4.0 X-ray expert set	119 120 123 124
XRI 4 0 X-ray imaging ungrade set	124 125
XRP 4 0 X-ray Solid state physics upgrade set	127
XRT	121
Y	
Yeast	110, 111
Yeast fermentation of sugar	60,61
	·
Z	
Zone of focus	132
Zwitterions	94

Your solution

with just one click!

Our comprehensive website **www.phywe.com** provides you with all the information you need to cover the full spectrum of solutions and products from PHYWE – in five languages! Whether your specific needs involve physics, chemistry, biology or applied sciences, and whether you are looking for information relating to school or university-level materials, you can always find just the right products there quickly and easily.

Further highlights on our website include:

- More than 50 product movies
- Complete assembly instructions in video form
- Up-to-date software downloads
- Free-of-charge descriptions of the experiments
- Operating manuals and instruction sheets to download
- Complete list of equipment

Visit us today: www.phywe.com

Global network

Your partner is never far away!

Our worldwide presence enables us to offer you customised local solutions. More than 145,000 customers in over 95 countries appreciate our experience and reliability, our high technical standards, and the ease and clarity with which our innovative products can be operated.

Are you looking for a partner near your location? Please do not hesitate to call us. We would be pleased to assign you a personal contact.

- HEADQUARTERS / PRODUCTION
 PHYWE Systeme GmbH & Co. KG
 Robert-Bosch-Breite 10
 D-37079 Göttingen
 Germany
 P. +49 (0) 551 604-0
 F. +49 (0) 551 604-107
 info@phywe.com
- AMERICAS
 P. +49 (0) 551 604-119
 F. +49 (0) 551 604-115
 america@phywe.com
- AFRICA
 P. +49 (0) 551 604-323
 F. +49 (0) 551 604-115
 africa@phywe.com
- EUROPE
 P. +49 (0) 551 604-254
 F. +49 (0) 551 604-115
 we@phywe.com
- EASTERN EUROPE / CENTRAL ASIA
 P. +49 (0) 551 604-233
 F. +49 (0) 551 604-115
 oe@phywe.com
- MIDDLE EAST
 P. +49 (0) 551 604-222
 F. +49 (0) 551 604-115
 nmo@phywe.com
- ASIA-PACIFIC
 P. +49 (0) 551 604-245
 F. +49 (0) 551 604-115
 asia@phywe.com

Worldclass solutions for better education: www.phywe.com

PHYWE Systeme GmbH & Co. KG Robert-Bosch-Breite 10 37079 Göttingen/Germany

> P. +49 (0) 551 604 - 0 F. +49 (0) 551 604 - 107 info@phywe.com

Our International Sales Partner

More than 600 experiments

Find more University Experiments in our special catalogues Physics, Chemistry, Biology, Engineering and Medicine.

PHVWE